Studia Logica

, Volume 59, Issue 1, pp 5–27 | Cite as

Why Combine Logics?

  • Patrick Blackburn
  • Maarten de Rijke


Combining logics has become a rapidly expanding entreprise that is inspired mainly by concerns about modularity and the wish to join together tailor made logical tools into more powerful but still manageable ones. A natural question is whether it offers anything new over and above existing standard languages.

By analysing a number of applications where combined logics arise, we argue that combined logics are a potentially valuable tool in applied logic, and that endorsements of standard languages often miss the point. Using the history of quantified modal logic as our main example, we also show that the use of combined structures and logics is a recurring theme in the analysis of existing logical systems.

combination of logics complex structures mathematics of modeling modularity representation languages. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARWISE, J., 1985, ‘Model theoretic logics: background and aims’, In J. Barwise and S. Feferman (eds) Model-Theoretic Logics, Springer, New York, 2–23.Google Scholar
  2. [2]
    VAN BENTHEM, J., 1984, ‘Correspondence theory’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 167–247.Google Scholar
  3. [3]
    VAN BENTHEM, J., 1993, ‘Beyond accessibility’, In M. de Rijke (ed), Diamonds and Defaults, Kluwer Academic Publishers, Dordrecht, 1–18.Google Scholar
  4. [4]
    BLACKBURN, P., and C. GARDENT, 1995, ‘A specification language for Lexical Functional Grammars’, Proceedings of the 7th Conference of the European Chapter of the Association of Computational Linguistics, Dublin.Google Scholar
  5. [5]
    BLACKBURN, P., W. MEYER-VIOL, and M. DE RIJKE, 1996, ‘A proof system for finite trees’, In Proceedings of CSL'95, Springer, New York, 86–105.Google Scholar
  6. [6]
    BLACKBURN, P., and M. DE RIJKE, 1997, ‘Zooming in, zooming out’, Journal of Logic, Language and Information 6, 5–31.Google Scholar
  7. [7]
    CARNAP, R., 1947, Meaning and Necessity, The University of Chicago Press, Chicago.Google Scholar
  8. [8]
    FINE, K., and G. SCHURZ, 1991, ‘Transfer theorems for stratified multi-modal logics’, In Proceedings of the Arthur Prior Memorial Conference, To appear.Google Scholar
  9. [9]
    FINGER, M., and D. M. GABBAY, 1992, ‘Adding a temporal dimension to a logic system’, Journal of Logic, Language and Information 1, 203–233.Google Scholar
  10. [10]
    FINGER, M., and D. M. GABBAY, 1996, ‘Combining temporal logic systems’, Notre Dame Journal of Formal Logic 37, 204–232.Google Scholar
  11. [11]
    GABBAY, D. M., 1981, ‘An irreflexivity lemma with applications to axiomatisations of conditions on linear frames’, In U. Mönnich (ed), Aspects of Philosophical Logic, Reidel, Dordrecht, 67–89.Google Scholar
  12. [12]
    GABBAY, D. M., 199-, Fibered Semantics, Manuscript, Imperial College.Google Scholar
  13. [13]
    GARSON, J., 1984, ‘Quantification in modal logic’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 249–307.Google Scholar
  14. [14]
    GAZDAR, G., E. KLEIN, G. PULLUM, I. SAG, 1985, Generalised Phrase Structure Grammar, Basil Blackwell, Oxford.Google Scholar
  15. [15]
    GHILARDI, S., 1991, ‘Incompleteness results in Kripke semantics’, Journal of Symbolic Logic 56, 517–538.Google Scholar
  16. [16]
    GROENENDIJK, J., and M. STOKHOF, 1991, ‘Dynamic predicate logic’, Linguistics and Philosophy, 14, 39–100.Google Scholar
  17. [17]
    GUREVICH, Y., 1991, ‘Evolving algebras: a tutorial introduction’, Bulletin EATCS 43, 264–284.Google Scholar
  18. [18]
    HAREL, D., 1984, ‘Dynamic logic’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic 2, Reidel, Dordrecht, 497–604.Google Scholar
  19. [19]
    HEMASPAANDRA, E., 1994, ‘Complexity transfer for modal logic’, Proceedings of the Ninth IEEE Symposium on Logic In Computer Science (LICS'94), 1994.Google Scholar
  20. [20]
    HEMASPAANDRA, E., 1996, ‘The price of universality’, Notre Dame Journal of Formal Logic 37, 174–203.Google Scholar
  21. [21]
    KAMP, H., and U. REYLE, 1993, From Discourse to Logic, Kluwer Academic Publishers, Dordrecht.Google Scholar
  22. [22]
    KAPLAN, R., and J. BRESNAN, 1982, ‘Lexical-functional grammar: a formal system for grammatical representation’, In J. Bresnan (ed), The Mental Representation of Grammatical Relations, MIT Press, Cambridge, 173–281.Google Scholar
  23. [23]
    KRACHT, M., and F. WOLTER, 1991, ‘Properties of independently axiomatisable bimodal logics’, Journal of Symbolic Logic 56, 1469–1485.Google Scholar
  24. [24]
    Eiben, G., Á. Kurucz and A. JÁnossy, 1996, Combining logics via combining algebraic theories', Notre Dame Journal of Formal Logic 37, 366–380.Google Scholar
  25. [25]
    MEYER, R. K., and E. D. MARES, 1994, ‘The semantics of entailment 0’, In K. Došen and P. Schröder-Heister (eds) Substructural Logic, Oxford University Press, 239–258.Google Scholar
  26. [26]
    MILNER, R., 1989, Communication and Concurrency, Prentice-Hall.Google Scholar
  27. [27]
    MUSKENS, R., 1996, Meaning and Partiality, Studies in Logic, Language and Information. CSLI Publications, Stanford.Google Scholar
  28. [28]
    ONO, H., 1983, ‘Model extension theorem and Craig's interpolation theorem for intermediate predicate logics’, Reports on Mathematical Logic 15, 41–58.Google Scholar
  29. [29]
    POPKORN, S., 1994, First Steps in Modal Logic, Cambridge University Press.Google Scholar
  30. [30]
    SELIGMAN, J., 1990, Perspectives: a Relativistic Approach to the Theory of Information, PhD Thesis, University of Edinburgh.Google Scholar
  31. [31]
    SELIGMAN, J., 1996, Combining logics with ease, In preparation.Google Scholar
  32. [32]
    SHEHTMAN, V., and D. SKVORTSOV, 1990, ‘Semantics of non-classical first-order predicate logics’, In P. Petkov (ed), Mathematical Logic, Plenum Press, New York, 105–116.Google Scholar
  33. [33]
    SPAAN, E., 1993, Complexity of Modal Logics, PhD Thesis, University of Amsterdam.Google Scholar
  34. [34]
    THOMASON, R., 1984, ‘Combinations of tense and modality’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 135–165.Google Scholar
  35. [35]
    VERMEULEN, K., and A. VISSER, 1996, ‘Dynamic bracketing and discourse representation’, Notre Dame Journal of Formal Logic 37, 321–365.Google Scholar
  36. [36]
    WOLTER, F., 1996, ‘A counterexample in tense logic’, Notre Dame Journal of Formal Logic 37, 167–173.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Patrick Blackburn
    • 1
  • Maarten de Rijke
    • 2
  1. 1.ComputerlinguistikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Dept. of Computer ScienceUniversity of WarwickCoventryEngland

Personalised recommendations