Theory and Decision

, Volume 43, Issue 2, pp 107–138 | Cite as

Stochastic evolution of rationality

  • Jean-Claude Falmagne
  • Jean-Paul Doignon


Following up on previous results by Falmagne, this paper investigates possible mechanisms explaining how preference relations are created and how they evolve over time. We postulate a preference relation which is initially empty and becomes increasingly intricate under the influence of a random environment delivering discrete tokens of information concerning the alternatives. The framework is that of a class of real-time stochastic processes having interlinked Markov and Poisson components. Specifically, the occurence of the tokens is governed by a Poisson process, while the succession of preference relations is a Markov process. In an example case, the preference relations are the various possible semiorders on the set of alternatives. Asymptotic results are obtained in the form of the limit probabilities of any semiorder. The arguments extend to a much more general situation including interval orders, biorders and partial orders. The results provide (up to a small number of parameters) complete quantitative predictions for panel data of a standard type, in which the same sample of subjects has been asked to compare the alternatives a number of times.

Biorder semiorder Poisson process Markov chain random walk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berge, Cl: 1968, ‘Principes de Combinatoire’ (translated as: Principles of Combinatorics. New York: Academic Press, 1971), Dunod, Paris.Google Scholar
  2. Björner, A: 1984, ‘Ordering of Coxeter Groups’, ContemporaryMathematics 34, 175–195.Google Scholar
  3. Block, H.D. and Marschak, J: 1960, Random Orderings and Probabilistic Theories of Responses; in ‘Contributions to Probability and Statistics’, I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, and H. Mann (Eds.), Stanford University Press, Stanford.Google Scholar
  4. Brent, R.P: 1974, ‘Algorithms for Minimization Without Derivatives’, (2nd. ed.) Prentice Hall, Englewood Cliffs.Google Scholar
  5. Converse, P.E.: 1964, ‘The Nature of Belief Systems in Mass Publics,’ in Ideology and Discontent D.E. Apter (Ed.), Free Press, New York.Google Scholar
  6. Converse, P.E.: 1970, ‘Attitudes and Non-Attitudes: Contination of a Dialogue’, in The Quantitative Analysis of Social Problems, E.R. Tufte (Ed.), Addison Wesley, Reading Mass.Google Scholar
  7. Doignon, J.-P. and Falmagne, J.-C1.: 1997, ‘Well Graded Families of Relations’, Discrete Mathematics, 173 (1–3), 35–44.Google Scholar
  8. Falmagne, J.-Cl.: 1996, ‘A Stochastic Theory for the Emergence and the Evolution of Preference Relations’, Mathematical Social Sciences 31, 63–84.Google Scholar
  9. Falmagne, J.-Cl.: 1997, ‘Stochastic Token Theory’, Journal of Mathematical Psychology, 41.Google Scholar
  10. Falmagne, J.-Cl. and Doignon, J.-P.: 1988, ‘A Markovian Procedure for Assessing the State of a System’, Journal of Mathematical Psychology 3, 232–258.Google Scholar
  11. Fechner, G. T.: 1860, ‘Elemente der Psychophysik’ [translated as Elements of Psychophysics Vol. 1. New York: Holt Rinehart and Winston, 1966], Druck und Verlag von Breitkops Härtel, Leipzig.Google Scholar
  12. Feigin, P. D. and Cohen, A.: 1978, ‘On a Model for the Cocordance Between Judges’, Journal of the Royal Statistical Society B 40, 203–213.Google Scholar
  13. Feldman, S.: 1989 ‘Measuring Issue Prefereces: The Problems of Response Instability’ in Political Analysis J.A. Stimson (Ed.), Annual Publication of the Methodology Section of the American Political Science Association, The University of Michigan Press, Ann Arbor.Google Scholar
  14. Feldman Högaasen, J.: 1969, ‘Ordres Partiels et Permutohèdre’, Mathématiques et Sciences Humaines 18, 27–38.Google Scholar
  15. Fishburn, P.: 1970, ‘Intransitive Indifference in Preference Theory: A Survey’, Operations Research 28, 207–228.Google Scholar
  16. Fishburn, P.: 1985, Interval Orders and Interval Graphs, Wiley, New York.Google Scholar
  17. Guilbaud, G. Th. and Rosenstiehl, P.: 1963, ‘Analyse Algébriqe d'un Scrutin’, Mathématiques et Sciences Humaines 3, 9–33.Google Scholar
  18. Johnson, N.L. and Kotz, S.: 1969, Distributions in Statistics Discrete Distributions. Houghton Mifflin, New York.Google Scholar
  19. Kemeny, J.G. and Snell, L.: 1960, Finite Markov Chains,Van Nostrand, Princeton.Google Scholar
  20. Le Conte de Poly-Barbut, Cl.: 1990, ‘Le Diagramme du Treillis Permutohèdre est Intersection des Diagrammes de Deux Produits Directs d'Ordres Totaux’, Mathématiques, Informatique et Sciences Humaines 112, 49–53.Google Scholar
  21. Luce, R.D.: 1956 ‘Semiorders and a Theory of Utility Discrimination’, Econometrica 24, 178–191.Google Scholar
  22. Luce, R.D.: 1973, ‘Three Axiom Systems for Additive Semiordered Structures’, SIAM Journal of Applied Mathematics 25 (1) 41–53.Google Scholar
  23. Luce, R.D.: 1978, ‘Lexicographic Tradeoff Structures’, Theory and Decision 9 187–193.Google Scholar
  24. Mallows, C.L.: 1957, ‘Non-null Ranking Models’, Biometrika 44, 114–130.Google Scholar
  25. Parzen, E.: 1962, Stochastic Processes, Holden-Day, San Francisco.Google Scholar
  26. Peizer, D.B. and Pratt, J.W.: 1968, ‘A Normal Approximation for Binomial F. Beta and Other Common Related Tail probabilities’, Journal of American Statistics Association 63, 1417–1456.Google Scholar
  27. Powel, M.J.D.: 1964, ‘An Efficient Method for Finding the Minimum of a Function in Several Variables Without Calculating Derivatives’, Computer Journal 7, 155–162.Google Scholar
  28. Roberts, F.: 1970, ‘On Nontransitive Indifference’, Journal of Mathematical Psychology 7, 243–258.Google Scholar
  29. Scott, D. and Suppes, P.: 1958, ‘Foundational Aspects of Theories of Measurement’, Journal of Symbolic Logic 23, 113–128.Google Scholar
  30. Suppes, P., Krantz, D.K., Luce, R.D., and Tversky, A.: 1989, Foundations of Measurement, Vol. 2: Geometrical, Threshold, and Probabilistic Representations, Academic Press, New York.Google Scholar
  31. Suppes, P. and Zinnes, J.L.: 1963, ‘Basic Measurement Theory’, in Handbook of Mathematical Psychology. Vol. 1. pp. 1–76, R.D. Luce, R.R. Bush and E. Galanter (Eds.),Wiley, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Jean-Claude Falmagne
    • 1
    • 2
  • Jean-Paul Doignon
    • 1
    • 2
  1. 1.School of Social SciencesUniversity of CaliforniaIrvineU.S.A.
  2. 2.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations