Solar Physics

, Volume 176, Issue 2, pp 285–297 | Cite as

A Manifestation of Negative Energy Waves in the Solar Atmosphere

  • P. S. Joarder
  • V. M. Nakariakov
  • B. Roberts


Magnetosonic modes of magnetic structures of the solar atmosphere in the presence of inhomogeneous steady flows are considered. It is shown that, when the speed of the steady flow exceeds the phase speed of one of the modes, the mode has negative energy, and can be subject to an over-stability due to the negative energy wave instabilities. It is shown that registered steady flows in the solar atmosphere, with speeds below the threshold of the Kelvin–Helmholtz instability, can provide the existence of the magnetosonic negative energy wave phenomena. In particular, in isolated photospheric magnetic flux tubes, there are kink surface modes with negative energy, produced by the external granulation downflows. Dissipative instability of these modes due to finite thermal conductivity and explosive instability due to nonlinear coupling of these modes with Alfvén waves are discussed. For coronal loops, it is found that only very high-speed flows (>300 km s-1) can produce negative energy slow body modes. In solar wind flow structures, both slow and fast body modes have negative energy and are unstable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bray, R. J., Cram, L. E., Durrant, C. J., and Loughhead, R. E.: 1991, Plasma Loops in the Solar Corona, Cambridge University Press, Cambridge.Google Scholar
  2. Cairns, R. A.: 1979, J. Fluid Mech. 92, 1.Google Scholar
  3. Craik, A. D. D.: 1985, Wave Interaction and Fluid Flows, Cambridge University Press, Cambridge.Google Scholar
  4. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, London.Google Scholar
  5. Edwin, P. M.: l991, Ann. Geophys. 9, 188.Google Scholar
  6. Edwin, P. M.: 1992, Ann. Geophys. 10, 631.Google Scholar
  7. Edwin, P. M. and Roberts, B.: 1982, Solar Phys. 76, 239.Google Scholar
  8. Ferrari, A., Trussoni, E., and Zaninetti, L.: 1981, Monthly Notices Roy. Astron. Soc. 196, 1051.Google Scholar
  9. Grappin, R., Velli, M., and Mangeney, A.: 1991, Ann. Geophys. 9, 416.Google Scholar
  10. Heyvaerts, J. and Priest, E. R.: 1983, Astron. Astrophys. 117, 220.Google Scholar
  11. Hollweg, J. V., Yang, G., Cadez, V. M., and Gakovic, B.: 1990, Astrophys. J. 349, 335.Google Scholar
  12. Joarder, R. S., Gokhale, M. H., and Venkatakrishnan, R: 1987, Solar Phys. 110, 255.Google Scholar
  13. McKenzie, J. F.: 1970, Planetary Space Sci. 18, 1.Google Scholar
  14. Nakariakov, V. M. and Oraevsky, V. N.: 1995, Solar Phys. 160, 289.Google Scholar
  15. Nakariakov, V. M. and Roberts, B.: 1995, Solar Phys. 159, 213.Google Scholar
  16. Nakariakov, V. M., Roberts, B., and Mann, G.: 1996, Astron. Astrophys. 311, 311.Google Scholar
  17. Nakariakov, V. M., Zhugzhda, Y. D., and Ulmschneider, P.: 1996, Astron. Astrophys. 312, 691.Google Scholar
  18. Nakaryakov, V. M. and Stepanyantz, Y. A.: 1994, Astron. Letters 20, 763.Google Scholar
  19. Parker, E. N.: 1964, Astrophys. J. 139, 690.Google Scholar
  20. Roberts, B.: 1981, Solar Phys. 69, 39.Google Scholar
  21. Roberts, B.: 1991, in E. R. Priest and A. W. Hood (eds), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, p. 105.Google Scholar
  22. Ryutova, M. P.: 1988, Soviet Phys. JETP 94, 138.Google Scholar
  23. Singh, A. R. and Talwar, S. P.: 1994, Solar Phys. 149, 331.Google Scholar
  24. Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience, New York.Google Scholar
  25. Weiland, J. and Wilhelmsson, H.: 1977, Coherent Non-Linear Interaction of Waves in Plasmas, Pergamon Press, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • P. S. Joarder
    • 1
  • V. M. Nakariakov
    • 1
  • B. Roberts
    • 1
  1. 1.School of Mathematical and Computational SciencesUniversity of St. AndrewsSt. Andrews, FifeScotland

Personalised recommendations