Solar Physics

, Volume 171, Issue 1, pp 49–59 | Cite as




The present paper considers resonant slow waves in 1D non-uniform magnetic flux tubes in dissipative MHD. Analytical solutions are obtained for the Lagrangian displacement and the Eulerian perturbation of the total pressure for both static and stationary equilibrium states. From these analytical solutions we obtain the fundamental conservation law and the jump conditions for resonant slow waves in dissipative MHD. The validity of the ideal conservation law and jump conditions obtained by Sakurai, Goossens, and Hollweg (1991) for static equilibria and Goossens, Hollweg, and Sakurai (1992) for stationary equilibria is justified in dissipative MHD.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Čadež, V. M. and Ballester, J. L.: 1996, Astron. Astrophys. 305, 977.Google Scholar
  2. Csík, A., Erdélyi, R., and Čadež, V. M.: 1996, Solar Phys., in press.Google Scholar
  3. Erdélyi, R. and Goossens, M.: 1996, Astron. Astrophys. 313, 664.Google Scholar
  4. Erdélyi, R., Goossens, M., and Ruderman, M. S.: 1995, Solar Phys. 161, 123 (Paper I).Google Scholar
  5. Goossens, M., Hollweg, J. V., and Sakurai, T.: 1992, Solar Phys. 138, 233.Google Scholar
  6. Goossens, M., Ruderman, M. S., and Hollweg, J. V.: 1995, Solar Phys. 157, 75.Google Scholar
  7. Hollweg, J. V.: 1987, Astrophys. J. 320, 875.Google Scholar
  8. Hollweg, J. V. and Yang, G.: 1988, J. Geophys. Res. 93, 5423.Google Scholar
  9. Hollweg, J. V., Yang, G., Čadež, V. M., and Gakovic, B.: 1990, Astrophys. J. 349, 335.Google Scholar
  10. Ruderman, M. S. and Goossens, M.: 1996, Astrophys. J., in press.Google Scholar
  11. Sakurai, T., Goossens, M., and Hollweg, J. V.: 1991, Solar Phys. 133, 247.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
  1. 1.Armagh ObservatoryArmaghN. Ireland

Personalised recommendations