Water, Air, and Soil Pollution

, Volume 101, Issue 1–4, pp 197–215 | Cite as

The Henry's Law Constant of Trichloroacetic Acid

  • Derek J. Bowden
  • Simon L. Clegg
  • Peter Brimblecombe


The Henry's law constant of trichloroacetic acid [K′H (mol kg-1 atm-1) for the equilibrium CCl3COOH(g) ⇌ CCl3COOH(aq)] has been determined from measured partial pressures over aqueous solutions at 298.15 K and 308.15 K. Its value is given by: ln(K′H) = (11.21 ± 0.5) – 8.66 × 103 (l/Tr – l/T) where T (K) is temperature and Tr is equal to 298.15 K, for an aqueous phase dissociation constant (Ka) of 0.55 mol kg-1 determined from literature osmotic coefficient and electromotive force data. Accuracy is estimated to be 4–30% in the product K′HKa. Trichloroacetic acid is highly soluble and will partition strongly into aqueous atmospheric aerosols, and completely into fog and cloud water. Its occurrence and transport in the environment are therefore to be associated primarily with liquid phases.

Henry's law solubility trichloroacetic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonner, O. D.: 1982, J. Chem. Thermo. 14, 275.Google Scholar
  2. Bonner, O. D.: 1980, J. Solut. Chem. 9, 877.Google Scholar
  3. Bonner, O. D., Flora, H. B. and Aitken, H. W.: 1971, J. Phys. Chem. 75, 2492.Google Scholar
  4. Bonner, O. D., Jackson, R. and Rogers, O. C.: 1962, J. Chem. Educ. 39, 37.Google Scholar
  5. Bonner, O. D. and Nunn, N. M.: 1985, J. Chem. Eng. Data 30, 336.Google Scholar
  6. Bonner, O. D. and Prichard, P. R.: 1979, J. Solut. Chem. 8, 113.Google Scholar
  7. Bowden, D. J., Clegg, S. L. and Brimblecombe, P.: 1996, Chemosphere 32, 405.Google Scholar
  8. Bowden, K., Hardy, M. and Parkin, D. C.: 1968, Can. J. Chem. 46, 2929.Google Scholar
  9. Clegg, S. L. and Brimblecombe, P.: 1985, Environ. technol. Letters 6, 269.Google Scholar
  10. Clegg, S. L. and Brimblecombe, P.: 1985, Atmos. Environ. 22, 91.Google Scholar
  11. Covington, A. K., Freeman, J. G. and Lilley, T. H.: 1970, J. Phys. Chem. 74, 3773.Google Scholar
  12. Crafts, A. S. and Robbins, P.: 1962, Weed Control, 3rd Edn., McGraw-Hill, Inc., New York, 1962.Google Scholar
  13. Daubert, T. E. and Danner, R. P.: 1989- 1991, Physical and Thermodynamic Properties of Pure Chemicals, Data Compilation, Part I, Hemisphere Publishing Corporation, Washington, D. C.Google Scholar
  14. De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S. and Kolb, C. E.: 1995, Environ. Sci. and Technol. 29, 1179.Google Scholar
  15. Esteso, M. A., Fernadez-Merida, L., Hernandez-Luis, F. F. and Gonzalez-Diaz, O. M.: 1988, J. Electroanal. Chem. 255, 71.Google Scholar
  16. Frank, H.: 1988, Nachr. Chem. Techn. Lab. 36, 8, 889.Google Scholar
  17. Frank, H., Vincon, A., Reiss, J. and Scholl, H.: 1990, J. High Res. Chromatography 13, 733.Google Scholar
  18. Frank, H., Scholl, H., Renschen, D., Rether, B., Laouedj, A. and Norokorpi, Y.: 1994, Environ. Sci. and Pollut. 1, 4.Google Scholar
  19. Frank, H., Renschen, D., Klein, A. and Scholl, H.: 1995, J. High Res. Chromatography 18, 83.Google Scholar
  20. Franklin, J.: 1994, Toxicol. Environ. Chem. 46, 169.Google Scholar
  21. Hoekstra, E. J. and De Leer, E. W. B.: 1995, Chemistry in Britain 31, 2.Google Scholar
  22. Holmes, H. F., Busey, R. H., Simonson, J. M., Mesmer, R. E., Archer, D. G. and Wood, R. H.: 1987, J. Chem. Thermo. 19, 863.Google Scholar
  23. Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S. and Kolb, C. E.: 1993, J. Phys. Chem. 97, 11037.Google Scholar
  24. Juuti, S., Hirvonen, A., Tarhanen, J., Holopainen, J. K. and Ruuskanen J.: 1993, Chemosphere 26, 1859.Google Scholar
  25. Juuti, S., Norokorpi, Y. and Ruuskanen, J.: 1995, Chemosphere 30, 439.Google Scholar
  26. Juuti, S., Vartiainen, T. and Ruuskanen, J.: 1996, Chemosphere 33, 2431.Google Scholar
  27. Keene, W. C.: 1995, in: Naturally-Produced Organohalogens, Grimvall, A. and De Leer, E. W. B. (eds.), Kluwer Academic Publishers, Dordrecht, p. 363.Google Scholar
  28. Kurz, J. L. and Farrar, J. M.: 1969, J. Amer. Chem. Soc. 91, 6057.Google Scholar
  29. Lignell, R., Heinonen-Tanski, H. and Uusi-Rauva, A.: 1984, Acta Agric. Scand. 34, 3.Google Scholar
  30. Lindstrom, K. and Osterberg, F.: 1986, Environ. Sci. and Technol. 20, 2, 133.Google Scholar
  31. Loustalot, A. J. and Ferrer, R.: 1950, Agron. J. 42, 323.Google Scholar
  32. Miller, J. W. and Uden, P. C.: 1983, Environ. Sci. and Technol. 17, 3, 150.Google Scholar
  33. Millero, F. J.: 1983, Geochim. Cosmochim. Acta 47, 2121.Google Scholar
  34. Pitzer, K. S.: 1995, Chemical Thermodynamics, McGraw-Hill Inc., New York, 626 pp.Google Scholar
  35. Pitzer, K. S.: 1991, in: Pitzer, K. S. (ed.), Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton, p. 75.Google Scholar
  36. Plumacher, J. and Renner, I.: 1993, Fresenius J. Anal. Chem. 347, 129.Google Scholar
  37. Richardson, M. L. and Gangoli, S.: 1994, The Dictionary of Substances and their Effects, Royal Society of Chemistry, London, Vol. 7, p 560.Google Scholar
  38. Scarano, E., Gay, G. and Forina, M.: 1971, Anal. Chem. 43, 206.Google Scholar
  39. Suntio, L. R., Shiu, W. Y. and Mackay, D.: 1988, Chemosphere 17, 1249.Google Scholar
  40. Tomlin, C. (ed.) 1994, The Pesticide Manual, incorporating the Agrochemical Handbook, 10th Edn., British Crop Potection Council and The Royal Society of Chemistry, Bath Press, Bath, p. 940.Google Scholar
  41. Tuazon, E. C., Atkinson, R., Aschmann, S. M., Goodman, M. A. and Winer, A. M.: 1988, Int. J. Chem. Kinet. 20, 241.Google Scholar
  42. Wine, P. H. and Chameides, W. I.: 1989, in: Scientific Assessment of Stratospheric Ozone: 1989, WMO Global Ozone Research and Monitoring Project, report No. 20, Vol. II, p. 273.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Derek J. Bowden
    • 1
  • Simon L. Clegg
    • 1
  • Peter Brimblecombe
    • 1
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichU.K. E-mail

Personalised recommendations