Advertisement

Space Science Reviews

, Volume 81, Issue 1–2, pp 173–198 | Cite as

Co2 and Climate: a Geologist's View

  • Harry N.A. Priem
Article

Abstract

Climate is discussed as an integral part of ‘System Earth’, determined by a complex interplay of numerous geological, biological and solar processes. The historical and geological record of changing climate and atmospheric CO2 pressure does not support the current popular vision that this greenhouse gas is the dominant climate controlling agent. When empirically ante post tested against past global climate changes, the ‘forecasts’ of the climate models mainly based on forcing by atmospheric CO2 are not borne out. On the other hand, recent studies show that solar variability rather than changing CO2 pressure is an important, probably the dominant climate forcing factor.

Keywords

Climate Change Global Climate Complex Interplay Geological Record Force Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardanuy, P., Stowe, L. L., Gruber, A., and Weiss, M.: 1991, ‘Shortwave, Longwave, and Net Cloud-Radiative Forcing as Determined from Nimbus-7 Observations’, J. Geophys. Res. 96, D.10, 18 537–18 549.Google Scholar
  2. Baar, H. J.W. de, J. T. M. de Jong, J. T. M. de, Bakker, D. C. E., Löscher, B.M., Veth, C., Bathmann, U., and Smetacek, V.: 1995, ‘Importance of Iron for Plankton Blooms and Carbion Dioxide Withdrawn in the Southern Ocean’, Nature 373, 412–415.Google Scholar
  3. Barnett, T. P., Santer, B. D., Jones, P. D., Bradley, R. S., and Briffa, K. R.: 1996, ‘Estimates of Low Frequency Natural Variability in Near-Surface Air Temperature’, The Holocene 6, 255–263.Google Scholar
  4. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: 1987, ‘Vostok Ice Core: a 160 000 Year Record of Atmospheric CO2’, Nature 329, 408–414.Google Scholar
  5. Barrett, J.: 1995, ‘The Roles of Carbon Dioxide and Water Vapour in Warming and Cooling the Earth's Troposphere’, Spectrochimica Acta 51A, 415–417.Google Scholar
  6. Barrett, J.: 1996, in J. Emsley (ed.), ‘Do CO2 Emissions Pose a Global Threat?’, The Global Warming Debate, European Science and Environment Forum, London, pp. 60–70.Google Scholar
  7. Barron, E. J.: 1989, in A. Berger, R. E. Dickinson, and J. W. Kidson (eds.), ‘Studies of Cretaceous Climate’, Understanding Climate Change, Geoph. Monograph 52, Am. Geoph. Union, pp. 149– 157.Google Scholar
  8. Barron, E. J.: 1992, in G. Brown, C. Hawkesworth, and C. Wilson (eds.), ‘Paleoclimatology’, Understanding the Earth, Cambridge University Press, Cambridge, pp. 485–505.Google Scholar
  9. Barron, E. J.: 1994, ‘Chill over the Cretaceous’, Nature 370, 415.Google Scholar
  10. Bentley, C. R. and Giovinetto, M. B.: 1992, ‘Mass Balance of Antarctica and Sea Level Change’ (Abs. AGU 1992 Fall Meeting), EOS Trans. 73, 203.Google Scholar
  11. Berner, R. A.: 1992, ‘Palaeo-CO2 and Climate’, Nature 358, 114.Google Scholar
  12. Berner, U., Delisle, G., and Streif, H.: 1995, ‘Klimaänderungen in geologischer Zeit’, Z. Angewandte Geol. 41, Heft 2, 69–81.Google Scholar
  13. Böttcher, C. J. F.: 1992, Science and Fiction of the Greenhouse Effect and Carbon Dioxide, The Global Institute for the Study of Natural Resources, The Hague, p. 80.Google Scholar
  14. Buisman, J.: 1995, Duizend Jaar Weer, Wind en Water in de Lage Landen (tot 1300), Uitgeverij van Wijnen, Franeker, p. 656.Google Scholar
  15. Buisman, J.: 1996, Duizend Jaar Weer, Wind en Water in de Lage Landen (1300-1450), Uitgeverij van Wijnen, Franeker, p. 690.Google Scholar
  16. Burgh, J. van der, Visscher, H., Dilcher, D., and Kürschner, W. M.: 1993, ‘Paleoatmospheric Signatures in Neogene Fossil Leaves’, Science 260, 1788–1790.Google Scholar
  17. Caputo, M. V. and Crowell, J. C.: 1985, ‘Migration of Glacial Centers Across Gondwana during Paleozoic Time’, Geol. Soc. Am. Bull. 96, 1020–1036.Google Scholar
  18. Corbyn, P.: 1996, in J. Emsley (ed.), ‘Does CO2 Respond to Global Temperature Changes Rather than Cause Them? – Counter Evidence to Greenhouse Assumptions from Ice Core Data and Volcanoes’, The Global Warming Debate, European Science and Environment Forum, London, pp. 71–77.Google Scholar
  19. Costa, U. R., Fyfe, W. S., Kerrich, R., and Nesbitt, H. W.: 1980, ‘Archaean Hydrothermal Talc Evidence for High Ocean Temperatures’, Chem. Geol. 30, 341–349.Google Scholar
  20. Crowley, T. J.: 1991, ‘Modelling Pliocene Warmth’, Quart. Sci. Rev. 10, 275–282.Google Scholar
  21. Crowley, T. J. and Kim, K.-Y.: 1996, ‘Comparison of Proxy Records of Climate Change and Solar Forcing’, Geophys. Res. Lett. 23, No. 4, 359–362.Google Scholar
  22. Delmas, R. J., Ascencio, J. M., and Legrand, M.: 1980, ‘Polar Ice Evidence that Atmospheric CO2, 20 000 yr BP was 50% of the Present’, Nature 284, 155–157.Google Scholar
  23. D’Hondt, S. and Arthur, M.: 1996, ‘Late Cretaceous Oceans and the Cool Tropic Paradox’, Science 271, 1838–1840.Google Scholar
  24. Eddy, J. A.: 1976, ‘The Maunder Minimum’, Science 192, 1189–1202.Google Scholar
  25. Fell, N. and Liss, P.: 1993, ‘Can Algae Cool the Planet?’, New Scientist 139, No. 1887, 34–38.Google Scholar
  26. Folland, C. K., Karl, T. R., and Vinikov, K. YA.: 1990, in J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (eds.), ‘Observed Climate Variations and Change’, Climate Change, the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 195–218.Google Scholar
  27. Friis-Christensen, E. and Lassen, K.: 1991, ‘Length of the Solar Cycle: an Indicator of Solar Activity Closely Associated with Climate’, Science 254, 698–700.Google Scholar
  28. Friis-Christensen, E. and Lassen, K.: 1992, Global Temperature Variations and a Possible Association with Solar Activity Variations, Danish Meteorol. Inst., Sci. Rep. 92–3.Google Scholar
  29. Gérard, J. C.: 1989, in A. Berger, R. E. Dickinson, and J.W. Kidson (eds.), ‘Aeronomy and Paleoclimate’, Understanding Climate Change, Geoph. Monograph 52/IUGG Series 7, pp. 139–148.Google Scholar
  30. Gerlach, T. M.: 1991, ‘Present-Day Carbon Dioxide Emissions from Volcanoes’, Earth in Space 4, No. 3, 5.Google Scholar
  31. Gough, D. O.: 1981, ‘Solar Interior Structure and Luminosity Variations’, Solar Phys. 74, 21–34.Google Scholar
  32. Groveman, B. S. and Landsberg, H. E.: 1979, ‘Simulated Northern Hemisphere Temperature Departures 1579–1880’, Geophys. Res. Lett. 6, No. 10, 767–769.Google Scholar
  33. Henderson-Sellers, A.: 1983, The Origin and Evolution of Planetary Atmospheres, Adam Hilger Ltd., Bristol, p. 240.Google Scholar
  34. Holland, H. D: 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, p. 582.Google Scholar
  35. Holland, H. D. and Petersen, U.: 1995, Living Dangerously – the Earth, Its Resources and the Environment, Princeton University Press, Princeton, p. 490.Google Scholar
  36. Houghton, R. A. and Skole, D. L.: 1990, in B. L. Turner, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, and W. B. Meyer (eds.), ‘Carbon’, The Earth Transformed by Human Action, Cambridge University Press, Cambridge, pp. 393–408.Google Scholar
  37. Houghton, R. A. and Woodwell, G. M.: 1989, ‘Global Climatic Change’, Sci. Amer. 260, No. 4, 18–26.Google Scholar
  38. Houten, F. B. van: 1990, ‘Palaeozoic Oolitic Ironstones on the North American Craton’, Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 245–254.Google Scholar
  39. IPCC: 1990, in J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (eds.), ‘Policymakers Summary’, Climate Change, the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. xi– xxxiii.Google Scholar
  40. Jäger, J. and Barry, R. G.: 1990, in B. L. Turner, W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, and W. B. Meyer (eds.), ‘Climate’, The Earth Transformed by Human Action, Cambridge University Press, Cambridge, pp. 335–351.Google Scholar
  41. Jaworowski, Z.: 1996, in J. Emsley (ed.), ‘Reliability of Ice Core Records for Climatic Projections’, The Global Warming Debate, European Science and Environment Forum, London, pp. 95–105.Google Scholar
  42. Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M. L.: 1986a,’ Northern Hemisphere Surface Air Temperature Variations: 1851–1984’, J.Climate Appl. Meteor. 25, 161–179.Google Scholar
  43. Jones, P. D., Raper, S. C. B., and Wigley, T. M. L.: 1986b, ‘Southern Hemisphere Surface Air Temperature Variations: 1851–1984’, J. Climate Appl. Meteor. 25, 1213–1230.Google Scholar
  44. Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M., and Petrov, V. N.: 1987, ‘Vostok Ice Core: a Continuous Isotope Temperature Record over the Last Climatic Cycle (160 000 years)’, Nature 329, 403–408.Google Scholar
  45. Jouzel, J., Barkov, N. I., Barnola, J. M., Bender, M., Chappellaz, J., Genthon, G., Kotlyakov, V. M., Lipenkov, V., Lorius, C., Petit, J. R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P: 1993, ‘Extending the Vostok Ice Core Record of Paleoclimate to the Penultimate Glacial Period’, Nature 364, 407–412.Google Scholar
  46. Karlén, W. and Kuylenstierna, J.: 1996, in J. Emsley (ed.), ‘Evidence from, the Scandinavian Tree Line Since the Last Ice Age’, The Global Warming Debate, European Science and Environment Forum, London, pp. 192–204.Google Scholar
  47. Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H.: 1989, in D. H. Petersen (ed.), ‘A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds: I. Analysis of Observational data’, Aspects of Climate Variability in the Pacific and Western Americas, Geophys. Monograph 55, Am. Geophys. Union, pp. 165–236.Google Scholar
  48. Kerr, R. A.: 1996, ‘A New Dawn for Sun-Climate Links?’, Science 271, 1360–1361.Google Scholar
  49. Knauth, L. P. and Lowe, R. D.: 1978, ‘Oxygen Isotope Geochemistry of Cherts from the Onverwacht Group (3.4 Billion Years), Transvaal, South Africa, with Implications for Secular Variations in the Isotopic Compositions of Cherts’, Earth Planet. Sci. Lett. 41, 209–222.Google Scholar
  50. Kürschner, W. M.: 1996, ‘Leaf Stomata as Biosensors of Plaeoatmopspheric CO2 Levels’, Ph.D. Thesis Utrecht University, LPP Contributions Series No. 5, 153 pp.Google Scholar
  51. Lamb, H. H.: 1988, Weather, Climate and Human Affairs, Routledge, London and New York, p. 364.Google Scholar
  52. Larson, R. L.: 1995, ‘The Mid-Cretaceous Superplume Episode’, Sci. Amer. 272, No. 2, 66–70.Google Scholar
  53. Lassen, K. and Friis-Christensen, E.: 1995, ‘Variability of the Solar Cycle Length During the Past Five Centuries and the Apparent Association with Terrestrial Climate’, J. Atmospheric Terrest. Phys. 57, 835–848.Google Scholar
  54. Lassen, K. and Friis-Christensen, E.: 1996, in J. Emsley (ed.), ‘A Long-Term Comparison of Sunspot Cycle Length and Temperature Change from Zürich Observatory’, The Global Warming Debate, European Science and Environment Forum, London, pp. 224–232.Google Scholar
  55. Leutwyler, K.: 1994, ‘No Global Warming?’, Sci. Amer. 270, No. 2: 12–13.Google Scholar
  56. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., and Le Treut, H.: 1990, ‘The Ice-Core Record: Climate Sensitivity and Future Greenhouse Warming’, Nature 347, 139–145.Google Scholar
  57. Lovelock, J. E.: 1979, Gaia, a New Look at Life on Earth, Oxford University Press, Oxford, p. 157.Google Scholar
  58. Lowe, D. R.: 1994, in S. Bengtson (ed.), ‘Early Environments: Constraints and Opportunities for Early Evolution’, Early Life on Earth, Nobel Symposium No. 84, Columbia University Press, New York, pp. 24–47.Google Scholar
  59. MacKenzie, D.: 1994, ‘Where Has All the Carbon Gone?’, New Scientist 141, No. 1907, 30–33.Google Scholar
  60. Marland, G.: 1989, Fossil Fuels CO 2 Emissions: Three Countries Account for 50% in 1988, CDIAC Communications, Winter 1989, Carbon Dioxide Analysis Information Center, Oak Ridge National Laboratory, pp. 1–4.Google Scholar
  61. Michaels, P. J. and Knappenberger, P. C.: 1996, in J. Emsley (ed.), ‘The United Nations Intergovernmental Panel on Climate Change and the Scientific ‘Consensus’ on Global Warming’, The Global Warming Debate, European Science and Environment Forum, London, pp. 158–178.Google Scholar
  62. Mitchell, J. F. B., Davis, R. A., Ingram, W. J., and Senior, C. A.: 1995, ‘On Surface Temperature, Greenhouse Gases and Aerosols: Models and Observations’, J. Climate 8, 2364–2395.Google Scholar
  63. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. and Zumbrunn, R.: 1982, ‘Ice Core Sample Measurements Give Atmospheric CO2 Content During the Past 40 000 Years’, Nature 295, 220–223.Google Scholar
  64. Negendank, J. F. W., Brauer, A., and Zolitschka, B.: 1990, ‘Die Eifelmaare als Erdgeschichtliche Fallen und Quellen zur Rekonstruktion des Paläoenvironments’, Mainzer geowiss. Mitt. 19, 235– 262.Google Scholar
  65. Owen, T., Cess, R. D., and Ramanathan, V.: 1979, ‘Enhanced CO2 Greenhouse to Compensate for Reduced Solar Luminosity on Early Earth’, Nature 277, 640–642.Google Scholar
  66. Paterson, D.: 1993, ‘Did Tibet Cool the World?’, New Scientist 139, No. 1880, 29–33.Google Scholar
  67. Pearce, F.: 1995a, ‘Iron Soup Feeds Algal Appetite for Carbon Dioxide’, New Scientist 147, No. 1984, 5.Google Scholar
  68. Pearce, F.: 1995b, ‘How Northern Forests Cool the World’, New Scientist 147, No. 1993, 14.Google Scholar
  69. Pearce, F.: 1996a, ‘Extra Iron Makes Blue Deserts Bloom’, New Scientist 152, No. 2051, 4.Google Scholar
  70. Pearce, F.: 1996b, ‘Lure of the Rings’, New Scientist 152, No. 2060, 38–43.Google Scholar
  71. Priem, H. N. A.: 1987, ‘Isotopic Tales of Ancient Continents’, Geol. Mijnb. 66, 275–292.Google Scholar
  72. Priem, H. N. A.: 1988, ‘Continent Genesis – a Story of Oceans, Life and Isotopes’, Memórias e Notícias, Publ. Mus. Lab. Mineral. Geol., Univ. Coimbra, No. 105, 1–37.Google Scholar
  73. Raisbeck, G. M., Yiou, F., Fruneau, M., Loiseaux, J. M., Lieuvin, M., Ravel, J. C., and Lorius, C.: 1981, ‘Cosmogenic 10Be Concentrations in Antarctic Ice During the Past 30 000 Years’, Nature 292, 825–826.Google Scholar
  74. Raisbeck, G. M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J., and Barkov, N. I.: 1987, ‘Evidence for Two Intervals of Enhanced 10Be Deposition in Antarctic Ice During the Past Glacial Period’, Nature 326, 273–277.Google Scholar
  75. Sarmiento, J. L.: 1993, ‘Atmospheric CO2 Stalled’, Nature 365, 697–698.Google Scholar
  76. Schidlowski, M.: 1987, ‘Application of Stable Carbon Isotopes to Early Biochemical Evolution on Earth’, Ann. Rev. Earth Planet. Sci. 15, 47–72.Google Scholar
  77. Schopf, J.W.: 1993, ‘Microfossils of the Early Archaean Apex Chert: New Evidence of the Antiquity of Life’, Science 260, 640–646.Google Scholar
  78. Sellwood, B. W., Price, G. D., and Valdes, J.: 1994, ‘Cooler Estimates of Cretaceous Temperatures’, Nature 370, 453–455.Google Scholar
  79. Svensmark, H. and Friis-Christensen, E.: 1996, Variation of Cosmic-Ray Flux and Global Cloud Coverage – a Missing Link in Solar-Climate Relationships, Danish Meteorological. Inst., Sci. Rep. 96–6.Google Scholar
  80. Thüne, W.: 1996a, Svente Arrhenius und Seine Eiszeithypothese, Beilage zur Berliner Wetterkunde, Amtsblatt des Instituts für Meteorologie der Freien Universität Berlin.Google Scholar
  81. Thüne, W.: 1996b, The Urban Heat Island Effect as a Factor of Global Heating, Lecture at the International Conference on Urban Climatology, Essen (Germany), June 6, 1996.Google Scholar
  82. Trenberth, K. E.: 1997 ‘The Use and Abuse of Climate Models’, Nature 386, 131–133.Google Scholar
  83. Walker, J. C. G.: 1982, ‘Climatic Factors on the Archaean Earth’, Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 1–11.Google Scholar
  84. Walker, J. C. G.: 1983, ‘Possible Limits on the Composition of the Archaean Ocean’, Nature 302, 518–520.Google Scholar
  85. Wayne, R. P.: 1985, Chemistry of Atmospheres, Clarendon Press, Oxford, p. 361.Google Scholar
  86. Weber, G. R.: 1996, in J. Emsley (ed.), ‘European Temperature Variations Since 1525’, The Global Warming Debate, European Science and Environment Forum, London, pp. 113–138.Google Scholar
  87. Yapp, C. J. and Poths, H.: 1992, ‘Ancient Atmospheric CO2 Pressures Inferred from Natural Goethites’, Nature 355, 342–344.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Harry N.A. Priem
    • 1
    • 2
  1. 1.Dept. of Earth SciencesUtrecht UniversityUtrecht
  2. 2.Global Institute for the Study of Natural ResourcesThe HagueThe Netherlands

Personalised recommendations