Geometriae Dedicata

, Volume 67, Issue 1, pp 107–116 | Cite as

On the Structure of Cimpact Simply Connected Manifolds of Positive Sectional Curvature

  • Wilderich Tuschmann

Abstract

We present a first structure theorem for compact simply connected positively curved manifolds with arbitrarily small pinching constants: For each n∈N and 0<δ≤1, there exists a positive number V = V(n,δ) such that if (M,g) is a compact simply connected n-dimensional Riemannian manifold with sectional curvature 0<δ≤K≤1 whose volume is less than V, then there is a smooth locally free S1-action on M, and the base space of the induced Seifert fibration is a simply connected Riemannian orbifold which carries itself a metric of positive curvature.

Positive curvature pinching collapsing circle action Seifert fibration. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ab]
    Abresch, U.: ¨ Uber das Gl¨ atten riemann'scher Metriken. Habilitationsschrift. Rheinische Friedrich-Wilhelms-Universit¨ at Bonn, Bonn 1988.Google Scholar
  2. [AM]
    Abresch, U. and Meyer, W. T.: Pinching below 1/4, injectivity radius and conjugate radius, J. Differential Geom. 40 (1994), 643–691.Google Scholar
  3. [AW]
    Aloff, S. and Wallach, N. R.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97.Google Scholar
  4. [Ba]
    Basaikin, Y. W.: On a family of compact 13-dimensional manifolds with positive curvature. Preprint (in Russian), Univ. of Novosibirsk, 1995.Google Scholar
  5. [Be1]
    Berger, M.: Sur quelques vari´ et´ es Riemanniennes suffisamment pinc´ ees, Bull. Soc. Math. France 88 (1960), 57–71.Google Scholar
  6. [Be2]
    Berger, M.: Les vari´ et´ es Riemanniennes 1/4-pinc´ ees, Ann. Scuola Norm. Sup. Pisa 14 (1960), 161–170.Google Scholar
  7. [Be3]
    Berger, M.: Sur les vari´ et´ es Riemanniennes pinc´ ees juste au-dessous de 1/4, Ann. Inst. Fourier 33(2) (1983), 135–150.Google Scholar
  8. [BMR]
    Bemelmans, J., Min-Oo and Ruh, E. A.: Smoothing Riemannian metrics, Math. Z. 188 (1984), 69–74.Google Scholar
  9. [Br]
    Bredon, G.: Introduction to Compact Transformation Groups, Academic Press, New York, 1972.Google Scholar
  10. [Ch]
    Cheeger, J.: Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61–74.Google Scholar
  11. [CG1]
    Cheeger, J. and Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986), 309–346.Google Scholar
  12. [CG2]
    Cheeger, J. and Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded II, J. Differential Geom. 32 (1990), 269–298.Google Scholar
  13. [CFG]
    Cheeger, J., Fukaya, K. and Gromov, M.: Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (2) (1992), 327–372.Google Scholar
  14. [CR]
    Cheeger, J. and Rong, X.: Collapsed Riemannian manifolds with bounded diameter and bounded covering geometry, GAFA 5 (2) (1995), 141–163.Google Scholar
  15. [Es]
    Eschenburg, J.-H.: New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982), 469–480.Google Scholar
  16. [Fu1]
    Fukaya, K.: Collapsing Riemannian manifolds to ones with lower dimension I, J. Differential Geom. 25 (1987), 139–156.Google Scholar
  17. [Fu2]
    Fukaya, K.: Collapsing Riemannian manifolds to ones with lower dimension II, J. Math. Soc. Japan 41(2) (1989), 333–356.Google Scholar
  18. [Fu3]
    Fukaya, K.: Hausdorff convergence and its applications, in T. Ochiai (ed.), Recent Topics in Differential and Analytic Geometry, Komokumiya, Tokyo, 1990.Google Scholar
  19. [J¨a]
    J¨ anich, K.: Differenzierbare G-Mannigfaltigkeiten, Lecture Notes in Math. 59, Springer, Berlin, 1968.Google Scholar
  20. [Kl1]
    Klingenberg, W.: Contributions to Riemannian geometry in the large, Ann. Math. 69 (1959), 654–666.Google Scholar
  21. [Kl2]
    Klingenberg, W.: ¨ Uber Riemannsche Mannigfaltigkeiten mit positiver Kr ¨ ummung, Comm. Math. Helv. 35 (1961), 47–54.Google Scholar
  22. [Ko]
    Kobayashi, S.: Transformation Groups in Differential Geometry, Springer, Berlin, 1972.Google Scholar
  23. [Ma]
    Margerin, C.: Personal letter. (C. M. seems to have obtained the first rigorous proof of this fact.)Google Scholar
  24. [O'N]
    O'Neill, B.: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.Google Scholar
  25. [Pe]
    Peters, S.: Cheeger's finiteness theoremfor diffeomorphism classes of Riemannian manifolds, J. reine angew. Math. 349 (1984), 77–82.Google Scholar
  26. [Ro]
    Rong, X.: On the fundamental groups of manifolds of positive sectional curvature. Preprint (revised version), to appear in Ann. Math. Google Scholar
  27. [Sa]
    Satake, I.: On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956), 359–363.Google Scholar
  28. [Sc]
    Scott, P.: The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487.Google Scholar
  29. [Th]
    Thurston, W.: The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton University Press, 1978.Google Scholar
  30. [Tu]
    Tuschmann, W.: Hausdorff convergence and the fundamental group, Math. Z. 218 (1995), 207–211.Google Scholar
  31. [Ya]
    Yau, S.-T.: Problem section of the seminar on differential geometry, Ann. Math. Stud. 102 (1982), 669–706.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Wilderich Tuschmann
    • 1
  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations