Space Science Reviews

, Volume 80, Issue 1–2, pp 27–48

Theories and Observations of Ion Energization and Outflow in the High Latitude Magnetosphere

  • Mats André
  • Andrew Yau


A review is given of several mechanisms causing outflow at high latitudes of ionospheric ions to the terrestrial magnetosphere. The upward ion motion along the geomaagnetic field can be divided into several categories, including polar wind, bulk ion outflow in the auroral region, upwelling ions and ion conics and beams. More than one ion energization mechanism can be operating within each category, and a combination of categories is important for the total ion outflow.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Whalen, B. A., Yau, A. W., Horita, R. E., Watanabe, S., and Sagawa, E.: 1993a, 'EXOS D (Akebono) Suprathermal Mass Spectrometer Observations of the Polar Wind', J. Geophys. Res. 98, 11,191.Google Scholar
  2. Abe, T., Whalen, B. A., Yau, A. W., Watanabe, S., Sagawa, E., and Oyama, K. I.: 1993b, 'Altitude Profile of the Polar Wind Velocity and its Relationship to Ionospheric Conditions', Geophys. Res. Lett. 20, 2825.Google Scholar
  3. André, M., Koskinen, H., Matson, L., and Erlandson, R.: 1988, 'Local Transverse Ion Energization In and Near the Polar Cusp', Geophys. Res. Lett. 15, 107.Google Scholar
  4. André, M., Crew, G. B., Peterson, W. K., Persoon, A. M., Pollock, C. J., and Engebretson, M. J.: 1990, 'Ion Heating by Broadband Low-Frequency Waves in the Cusp/Cleft', J. Geophys. Res. 95, 20,809.Google Scholar
  5. André, M. and Chang, T.: 1993, 'Ion Heating Perpendicular to the Magnetic Field', Physics of Space Plasmas (1992) 12, Scientific Publishers, Cambridge, MA, 35.Google Scholar
  6. André, M., Norqvist, P., Vaivads, A., Eliasson, L., Norberg, O., Eriksson, A. I., and Holback, B.: 1994, 'Transverse Ion Energization and Wave Emissions Observed by the Freja Satellite', Geophys. Res. Lett. 21, 1915.Google Scholar
  7. André, M.: 1997, 'Waves and Wave-Particle Interactions in the Auroral Region', J. Atmos. Terr. Phys., in press.Google Scholar
  8. André, M., Norqvist, P., Andersson, L., Eliasson, L., Erikson, A. I., Blomberg, L., Erlandson, R. E., and Waldemark, J.: 1997, 'Ion Energization Mechanisms at 1700 km in the Auroral Region', J. Geophys. Res., in press.Google Scholar
  9. Arnoldy, R. L., Lynch, K. A., Kintner, P. M., Bonnell, J., Moore, T. E., and Pollock, C. J.: 1996, 'SCIFER—Structure of the Cleft Ion Fountain at 1400 km Altitude', Geophys. Res. Lett. 23, 1869.Google Scholar
  10. Ashour-Abdalla, M. and Okuda, H.: 1984, 'Turbulent Heating of Heavy Ions on Auroral Field Lines', J. Geophys. Res. 89, 2235.Google Scholar
  11. Ashour-Abdalla, M., Schriver, D., and Okuda, H.: 1988, 'Transverse Ion Heating in Multicomponent Plasmas Along Auroral Zone Field Lines', J. Geophys. Res. 93, 12,826.Google Scholar
  12. Axford, W. I.: 1968, 'The Polar Wind and the Terrestrial Helium Budget', J. Geophys. Res. 73, 6855.Google Scholar
  13. Ball, L.: 1989, 'Can Ion Acceleration by Double-Cyclotron Absorption Produce O+ Ion Conics?', J. Geophys. Res. 94, 15,257.Google Scholar
  14. Ball, L. and André, M.: 1991a, 'Heating of O+ Ions in the Cusp/Cleft: Double-Cyclotron Absorbtion Versus Cyclotron Resonance', J. Geophys. Res. 96, 1429.Google Scholar
  15. Ball, L. and André, M.: 1991b, 'What Parts of Broadband Spectra are Responsible for Ion Conic Production?' Geophys. Res. Lett. 18, 1683.Google Scholar
  16. Barakat, A. R. and Schunk, R. W.: 1983, 'O+ Ions in the Polar Wind', J. Geophys. Res. 88, 7887.Google Scholar
  17. Blelly, P. L. and Schunk, R. W.: 1993, 'A Comparative Study of the Time-Dependent Standard 8-, 13-, and 16-Moment Transport Formulations of the Polar Wind', Annales Geophys. 11, 443.Google Scholar
  18. Bonnell, J., Kintner, P., Wahlund, J.-E., Lynch, K., and Arnoldy R.: 1996, 'Interferometric Determination of Broadband ELF Wave Phase Velocity Within a Region of Transverse Auroral Ion Acceleration', Geophys. Res. Lett. 23, 3297.Google Scholar
  19. Borovsky, J. E., 1984, 'The Production of Ion Conies by Oblique Double Layers', J. Geophys. Res. 89, 2251.Google Scholar
  20. Borovsky, J. E.: 1993, 'Auroral Arc Thickness as Predicted by Various Theories', J. Geophys. Res. 98, 6101.Google Scholar
  21. Burch, J. L.: 1988, 'Energetic Particles and Currents: Results From Dynamics Explorer', Rev. Geophys. 26, 215.Google Scholar
  22. Chang, T. and Coppi, B.: 1981, 'Lower Hybrid Acceleration and Ion Evolution in the Supraauroral Region', Geophys. Res. Lett. 8, 1253.Google Scholar
  23. Chang, T., Crew, G. B., Hershkowitz, N., Jasperse, J. R., Retterer, J. M., and Winningham, J. D.: 1986, 'Transverse Acceleration of Oxygen lons by Electromagnetic Ion Cyclotron Resonance with Broadband Left-Hand-Polarized Waves', Geophys. Res. Lett. 13, 636.Google Scholar
  24. Chang, T.: 1993, 'Lower-Hybrid Collapse, Caviton Turbulence, and Charged Particle Energization in the Topside Auroral Ionosphere and Magnetosphere', Phys. Fluids B 5, 2646.Google Scholar
  25. Chappell, C. R.: 1988, 'The Terrestrial Plasma Source: A New Perspective in Solar-Terrestrial Processes From Dynamics Explorer'. Rev. Geophys. 26, 229.Google Scholar
  26. Cladis, J. B.: 1986, 'Parallel Acceleration and Transport of Ions From Polar Ionosphere to Plasma Sheet', Geophys. Res. Lett. 13, 893.Google Scholar
  27. Collis, P., Häggström, I., Kaila, K., and Rietveld, M. T.: 1991, 'EISCAT Radar Observations of Enhanced Incoherent Scatter Spectra; Their Relation to Red Aurora and Field Aligned Currents', Geophys. Res. Lett. 18, 1031.Google Scholar
  28. Demars, H. G. and Schunk, R. W.: 1987, 'Temperature Anisotropies in the Terrestrial Ionosphere and Plasmasphere', Rev. Geophys. 25, 1659.Google Scholar
  29. Demars, H. G. and Schunk, R. W.: 1989, 'Solutions to Bi-Maxwellian Transport Equations for the Polar Wind', Planet. Space Sci. 37, 85.Google Scholar
  30. Ergun, R. E., Klementis, E., Delory, G. T., McFadden, J. P., and Carlsson, C. W.: 1995, 'VLF Wave Localization in the Low Altitude Auroral Oval', Geophys. Res. Lett. 22, 2099.Google Scholar
  31. Erlandson, R. E., Zanetti, L. J., Acũna, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., and Blomberg, L. G.: 1994, 'Freja Observations of Electromagnetic Ion Cyclotron ELF Waves and Transverse Ion Acceleration on Auroral Field Lines', Geophys. Res. Lett. 21, 1855.Google Scholar
  32. Ganguli, S. B.: 1996, 'The Polar Wind', Rev. Geophys. 34, 311.Google Scholar
  33. Ganguli, G., Keskinen, M. J., Romero, H., Heelis, R., Moore, T., and Pollock, C. J.: 1994, 'Coupling of Microprocesses and Macroprocesses due to Velocity Shear: An Application to the Low-Altitude Ionosphere', J. Geophys. Res. 99, 8873.Google Scholar
  34. Gombosi, T. I., Cravens, T. E., and Nagy, A. F.: 1985, 'A Time Dependent Theoretical Model of the Polar Wind: Preliminary Results', Geophys. Res. Lett. 12, 167.Google Scholar
  35. Gombosi, T. I. and Rasmussen, C. E.: 1991, 'Transport of Gyration-Dominated Space Plasmas of Thermal Origin, 1, Generalized Transport Equations', J. Geophys. Res. 96, 7759.Google Scholar
  36. Gustafsson, G., André, M., Matson, L., and Koskinen, H.: 1990, 'On Waves Below the Local Proton Gyrofrequency in Auroral Acceleration Regions', J. Geophys. Res. 95, 5889.Google Scholar
  37. Giles, B. L., Chappell, C. R., Moore, T. E., Comfort, R. H., and Waite Jr., J. H.: 1994, 'Statistical Survey of Pitch Angle Distributions in Core (0–50 eV) Ions from Dynamics Explorer 1: Outflow in the Auroral Zone, Polar Cap, and Cusp', J. Geophys. Res. 99, 17,483.Google Scholar
  38. Heelis, R. A., Bailey, G. B., Sellek, R., Moffett, R. J., and Jenkins, B.: 1993, 'Field-Aligned Drifts of Subauroral Ion Drift Events', J. Geophys. Res. 98, 21,493.Google Scholar
  39. Horwitz, J. L.: 1984, 'Features of Ion Trajectories in the Polar Magnetosphere', Geophys. Res. Lett. 11, 1111.Google Scholar
  40. Horwitz, J. L.: 1986, 'Velocity Filter Mechanism for Ion Bowl Distributions (Bimodal Conics)', J. Geophys. Res. 91, 4513.Google Scholar
  41. Horwitz, J. L., Ho, C. W., Scarbo, H. D., Wilson, G. R., and Moore, T. E.: 1994, 'Centrifugal Acceleration of the Polar Wind', J. Geophys. Res., 99, 15,051.Google Scholar
  42. Hultqvist, B.: 1991, 'Review Paper: Extraction of Ionospheric Plasma by Magnetospheric Processes', J. Atmos. Terr. Phys. 53, 3.Google Scholar
  43. Hultqvist, B.: 1996, 'On the Acceleration of Positive Ions by High-Latitude, Large-Amplitude Electric Field Fluctuations', J. Geophys. Res. 101, 27111.Google Scholar
  44. Johnson, J. R., Chang, T., and Crew, G. B.: 1995, 'A Study of Mode Conversion in an Oxygen-Hydrogen Plasma', Phys. Plasmas 2, 1274.Google Scholar
  45. Kintner, P. M., LaBelle, J., Scales, W., Yau, A. W., and Whalen, B. A.: 1986, 'Observations of Plasma Waves Within Regions of Perpendicular Ion Acceleration', Geophys. Res. Lett. 13, 1113.Google Scholar
  46. Kintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K. A., Pollock, C. J., and Moore, T. E.: 1992, 'Localized Lower Hybrid Acceleration of Ionospheric Plasma', Phys. Rev. Lett. 68, 2448.Google Scholar
  47. Kintner, P. M., Bonnell, J., Arnoldy, R., Lynch, K., Pollock, C., and Moore, T.: 1996, 'SCIFER-Transverse Ion Acceleration and Plasma Waves', Geophys. Res. Lett. 23, 1873.Google Scholar
  48. Klumpar, D. M., Peterson, W. K., and Shelley, E. G.: 1984, 'Direct Evidence for Two-Stage (Bimodal) Acceleration of Ionospheric Ions', J. Geophys. Res. 95, 10,779.Google Scholar
  49. Klumpar, D. M.: 1986, 'A Digest and Comprchensive Bibliography on Transverse Auroral Ion Acceleration', Ion Acceleration in the Magnetosphere and lonosphere, American Geophysical Union, Washington D.C., 389.Google Scholar
  50. Knudsen, D. J., Clemmons, J. H., and Wahlund, J.-E.: 1997, 'Correlation Between Core Ion Energization, Suprathermal Electron Bursts, and Broad-Band ELF Plasma Waves', J. Geophys. Res., in press.Google Scholar
  51. Lemaire, J.: 1972, 'Effect of Escaping Photoelectrons in a Polar Exospheric Model', Space Res. 12, 1413.Google Scholar
  52. Le Quéau, D., Roux, A., Rauch, J. L., Lefeuvre, F., and Bosqued, J. M.: 1993, 'Heating of Protons by Resonant Absorption in a Multicomponent Plasma, 2. Theoretical Model', J. Geophys. Res. 98, 13,363.Google Scholar
  53. Li, X. and Temerin, M.: 1993, 'Ponderomotive Effects on Ion cceleration in the Auroral Zone', Geophys. Res. Lett. 20, 13.Google Scholar
  54. Liu, C., Horwitz, J. L., and Richards, P. G.: 1995, 'Effects of Frictional Heating and Soft-Electron Precipitation on High-Latitude F-Region Upflows', Geophys. Res. Lett. 22, 2713.Google Scholar
  55. Lockwood, M., Waite Jr. J. H., Moore, T., Johnson, J. F. E., and Chappell, C. R.: 1985a, 'A New Source of Suprathermal O+ Ions Near the Dayside Polar Cap Boundary', J. Geophys. Res. 90, 4099.Google Scholar
  56. Lockwood, M., Chandler, M. O., Horwitz, J. L., Waite Jr., J. H., Moore, T. E., and Chappell, C. R.: 1985b, 'The Cleft Ion Fountain', J. Geophys. Res. 90, 9736.Google Scholar
  57. Loranc, M., Hanson, W. B., Heelis, R. A., and St.-Maurice, J. P.: 1991, 'A Morphological Study of Vertical Ionospheric Flows in the High-Latitude F Region', J. Geophys. Res. 96, 3627.Google Scholar
  58. Lundin, R. and Eliasson, L.: 1991, 'Auroral Energization Processes', Annales Geophys. 9, 202.Google Scholar
  59. Lundin, R., Haerendel, G., Boehm, M., and Holback, B.: 1994, 'Large-Scale Auroral Plasma Density Cavities Observed by Freja', Geophys. Res. Lett. 21, 1903.Google Scholar
  60. Lynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J.: 1996, 'The AMICIST Auroral Sounding Rocket: A Comparison of Transverse Ion Acceleration Mechanisms', Geophys. Res. Lett. 23, 3293.Google Scholar
  61. Lysak, R. L.: 1986, 'Ion Acceleration by Wave-Particle Interaction', Ion Acceleration in the Magnetosphere and Ionosphere, American Geophysical Union, Washington D.C., 261.Google Scholar
  62. Miyake, W., Mokai, T., and Kaya, N.: 1996, 'On the Origins of the Upward Shift of Elevated (Bimodal) Ion Conics in Velocity Space', J. Geophys. Res. 101, 26,961.Google Scholar
  63. Moore, T. E., Chappell, C. R., Lockwood, M., and Waite Jr., J. H.: 1985, 'Superthermal Ion Signatures of Auroral Acceleration Processes', J. Geophys. Res. 90, 1611.Google Scholar
  64. Moore, T. E., Lockwood, M., Chandler, M. O., Waite Jr., J. H., Chappell, C. R., Persoon, A., and Sugiura, M.: 1986, 'Upwelling O+ Ion Source Characteristics', J. Geophys. Res. 91, 7019.Google Scholar
  65. Moore, T. E., Pollock, C. J., Adrian, M. L., Kintner, P. M., Arnoldy, R. I., Lynch, K. A., and Holtet, J. A.: 1996, 'The Cleft Ion Plasma at Low Solar Activity', Geophys. Res. Lett. 23, 1877.Google Scholar
  66. Norqvist, P., André, M., Eliasson, L., Erikson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H.: 1996, 'Ion Cyclotron Heating in the Dayside Magnetosphere', J. Geophys. Res. 101, 13,179.Google Scholar
  67. Peterson, W. K., Collin, H. L., Doherty, M. F., and Bjorklund, C. M.: 1992, 'O+ and He+ Restricted and Extended (Bi-Modal) Ion Conic Distributions', Geophys. Res. Lett. 19, 1439.Google Scholar
  68. Pollock, C. J., Chandler, M. O., Moore, T. E., Waite Jr., J. H., Chappel, C. R., and Gurnett, D. A.: 1990, 'A Survey of Upwelling Ion Event Characteristics', J. Geophys. Res. 95, 18,969.Google Scholar
  69. Raitt, W. J. and Schunk, R. W.: 1983, Energetic Ion Composition in the Earth's Magnetosphere, Terra Scientific Publishing, Tokyo, 99.Google Scholar
  70. Rauch, J. L., Lefeuvre, F., Le Quéau, D., Roux, A., Bosqued, J. M., and Berthelier, J. J.: 1993, 'Heating of Proton Conics by Resonant Absorption in a Multicomponent Plasma 1. Experi-mental Evidence', J. Geophys. Res. 98, 13,347.Google Scholar
  71. Reiff, P. H., Collin, H. L., Craven, J. D., Burch, J. L., Winningham, J. D., Shelley, E. G. Frank, L. A., and Friedman, M. A.: 1988, 'Determination of Auroral Electrostatic Potentials Using High and Low-Altitude Particle Distributions', J. Geophys. Res. 93, 7441.Google Scholar
  72. Retterer, J. M., Chang, T., Crew, G. B., Jasperse, J. R., and Winningham, J. D.: 1987, 'Monte Carlo Modeling of Ionospheric Oxygen Acceleration by Cyclotron Resonance with Broadband Electromagnetic Turbulence', Phys. Rev. Lett. 59, 148.Google Scholar
  73. Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N.: 1975, 'Heos 2 Plasma Observations in the Distant Polar Magnetosphere: The Plasma Mantle', J. Geophys. Res. 80, 2723.Google Scholar
  74. Sharp, R. D., Johnson, R. G., and Shelley, E. G.: 1977, 'Observations of an Ionospheric Acceleration Mechanism Producing Energetic (keV) Ions Primarily Normal to the Geomagnetic Field Direction', J. Geophys. Res. 82, 3324.Google Scholar
  75. Sharp, R. D., Carr, D. L., Peterson, W. K., and Shelley, E. G.: 1981, 'Ion Streams in the Magnetotail', J. Geophys. Res. 86, 4639.Google Scholar
  76. Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972, 'Satellite Observations of Energetic Heavy Ions During a Geomagnetic Storm', J. Geophys. Res. 77, 6104.Google Scholar
  77. Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976a, 'Satellite Observations of an Ionospheric Acceleration Mechanism', Geophys. Res. Lett. 3, 654.Google Scholar
  78. Shelley, E. G., Sharp, R. D., and Johnson, R. G.: 1976b, 'He++ H+ Flux Measurements in the Day Side Cusp: Estimates of Convection Electric Field', J. Geophys. Res. 81, 2363.Google Scholar
  79. Shelley, E. G.: 1988, Adv. Space Res. 6–3, 121.Google Scholar
  80. Shukla, P. K., Stenflo, L., Bingham, R., and Dendy, R. O.: 1996, 'Ponderomotive Force Acceleration of Ions in the Auroral Region', J. Geophys. Res. 101, 27,449.Google Scholar
  81. Schunk, R. W. and Watkins, D. S.: 1981, 'Electron Temperature Anisotropy in the Polar Wind', J. Geophys. Res. 86, 91.Google Scholar
  82. Schunk, R. W.: 1988, Modeling Magnetospheric Plasma, Geophys. Monogr. Ser. 44, American Geophysical Union, Washington D.C., 219.Google Scholar
  83. Singh, N.: 1994, 'Ponderomotive Versus Mirror Force in the Creation of the Filamentary Cavities in Auroral Plasma', Geophys. Res. Lett. 21, 257.Google Scholar
  84. Swift, D.: 1990, 'Simulation of the Ejection of Plasma from the Polar Ionosphere', J. Geophys. Res. 95, 12103.Google Scholar
  85. Tam S. W. Y., Yasseen, F., Chang, T., Ganguli, S. B., and Retterer, J. M.: 1995, 'Self-Consistent Kinetic Photoelectron Effects on the Polar Wind', Geophys. Res. Lett. 22, 2107.Google Scholar
  86. Temerin, M.: 1986, 'Evidence for a Large Bulk Ion Conic Heating Region', Geophys. Res. Lett. 13, 1059.Google Scholar
  87. Temerin, M. and Lysak, R. L.: 1984, 'Electromagnetic Ion Cyclotron Mode (ELF) Waves Generated by Auroral Electron Precipitation', J. Geophys. Res. 89, 2849.Google Scholar
  88. Temerin, M. and Roth, I.: 1986, 'Ion Heating by Waves with Frequencies Below the Ion Gyrofrequency', Geophys. Res. Lett. 13, 1109.Google Scholar
  89. Vago, J. L., Kintner, P. M., Chesney, S. W., Arnoldy, R. L., Lynch, K. A., Moore, T. E., and Pollock, C. J.: 1992, 'Transverse Ion Acceleration by Localized Lower Hybrid Waves in the Topside Auroral Ionosphere', J. Geophys. Res. 97, 16,935.Google Scholar
  90. Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J., and Jones, G. O. L.: 1992, 'EISCAT Observations of the Topside Ionospheric Ion Outflows During Auroral Activity: Revisited', J. Geophys. Res. 97, 3019.Google Scholar
  91. Wahlund, J. E., Eriksson, A. I., Holback, B., Boehm, M. H., Bonnell, J., Kintner, P. M., Seyler, C. E., Clemmons, J. H., Eliasson, L., Knudsen, D. J., Norqvist, P., and Zanetti, L. J.: 1996, 'Broadband ELF Plasma Emissions During Auroral Energization, I, Slow Ion Acoustic Waves', J. Geophys. Res., in press.Google Scholar
  92. Whalen, B. A., Bernstern, W., and Daly, P. W.: 1978, 'Low Altitude Acceleration of Ionospheric Ions', Geophys. Res. Lett. 5, 55.Google Scholar
  93. Wilson, G. R.: 1994, 'Kinetic Modeling of O+ Upflows Resulting from E × B Convection Heating in the High-Latitude F Region Ionosphere', J. Geophys. Res. 99, 17,453.Google Scholar
  94. Winningham, J. D. and Gurgiolo, C.: 1982, 'DE-2 Photoelectron Measurements Consistent With a Large Scale Parallel Electric Field over the Polar Cap', Geophys. Res. Lett. 9, 977.Google Scholar
  95. Witt, E., Hudson, M. K., Li, X., Roth, I., and Temerin, M.: 1995, 'Ponderomotive Effects on Distributions of O+ Ions in the Auroral Zone', J. Geophys. Res. 100, 12,151.Google Scholar
  96. Yasseen, F., Retterer, J. M., Chang, T., and Winningham, J. D.: 1989, 'Monte-Carlo Modeling of Polar Wind Photoelectron Distributions with Anomalous Heat Flux', Geophys. Res. Lett. 16, 1023.Google Scholar
  97. Yasseen, F. and Retterer, J. M.: 1991, 'Critical Points in the 16-Moment Approximation', J. Geophys. Res. 96, 1827.Google Scholar
  98. Yau, A. W., Whalen, B. A., Abe, T., Mukai, T., Oyama, K. I., and Chang, T.: 1995, 'Akebono Observations of Electron Temperature Anisotropy in the Polar Wind', J. Geophys. Res. 100, 17,451.Google Scholar
  99. Yau, A. W. and André, M.: 1997, 'Sources of Ion Outflow in the High Latitude Ionosphere', Space Sci. Rev., this issue.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Mats André
    • 1
  • Andrew Yau
    • 2
  1. 1.Swedish Institute of Space PhysicsUme∢ UniversityUme∢Sweden
  2. 2.Institute for Space Research, Department of Physics and AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations