Synthese

, Volume 112, Issue 1, pp 53–73 | Cite as

Newtonian Gravity, Quantum Discontinuity and the Determination of Theory by Evidence

  • Thomas Bonk
Article

Abstract

A closer examination of scientific practice has cast doubt recently on the thesis that observation necessarily fails to determine theory. In some cases scientists derive fundamental hypotheses from phenomena and general background knowledge by means of demonstrative induction. This note argues that it is wrong to interpret such an argument as providing inductive support for the conclusion, e.g. by eliminating rival hypotheses. The examination of the deduction of the inverse square law of gravitation due to J. Bertrand, and R. Fowler's deduction of the quantization of the linear harmonic oscillator's energy spectrum from Planck's radiation law illustrates this point. It is suggested that demonstrative induction is a computational step in fitting a theoretical model and a set of phenomena, with little direct confirmational impact. The thesis of underdetermination, whatever one may think of it, is not threatened by demonstrative induction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bertrand, Joseph L. F.: 1873, 'Théorème relatif au movement d'un point attiré vers un centre fixe', Comptes Rendus des Seances de l'Academie des Sciences 77, 849–853.Google Scholar
  2. Brush, Stephan G.: 1983, Statistical Physics and the Atomic Theory of Matter, Princeton University Press, Princeton.Google Scholar
  3. Darboux, G.: 1877, 'Recherche de la loi que doit suivre une force centrale pour que la trajectoire qu'elle détermine soit toujours une conique', Comptes Rendus des Seances de l'Academie des Sciences 84, 936–938.Google Scholar
  4. Dorling, Jon: 1971, 'Einstein's Introduction of Photons:Argument byAnalogy or Deduction from the Phenomena?', British Journal for the Philosophy of Science 22, 1–8.Google Scholar
  5. Dorling, Jon: 1973, 'Demonstrative Induction: Its Significant Role in the History of Physics', Philosophy of Science 40, 360–372.Google Scholar
  6. Ehrenfest, Paul: 1911, 'Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle?' Annalen der Physik 36, 91–118.Google Scholar
  7. Fowler, R. H.: 1921, 'A Simple Extension of Fourier's Integral Theorem and Some Physical Applications, in Particular to the Theory of Quanta', Proceedings of the Royal Society A 90, 464–474.Google Scholar
  8. Fowler, R. H.: 1936, Statistical Mechanics, 2nd Ed. Cambridge University Press, Cambridge.Google Scholar
  9. Greenberg, David F.: 1966, 'Accidental Degeneracy', American Journal of Physics 34, 1101–1109.Google Scholar
  10. Harris, E. E.: 1970, Hypothesis and Perception, Humanities Press Inc., New York.Google Scholar
  11. Herschel, John F. W.: 1839, A Preliminary Discourse on the Study of Natural Philosophy, Lea & Blanchard, Philadelphia.Google Scholar
  12. Johnson, W. E.: 1964, Logic Part II Demonstrative Inference: Deductive and Inductive, Dover Publications, New York.Google Scholar
  13. Kitcher, Philip: 1993, The Advancement of Science, Oxford University Press, Oxford.Google Scholar
  14. Laymon, Ronald: 1994, 'Demonstrative Induction, Old and New Evidence and the Accuracy of the Electrostatic Inverse Square Law', Synthese 99, 23–58.Google Scholar
  15. Norton, John D.: 1993, 'The Determination of Theory by Evidence: The Case for Quantum Discontinuity, 1900–1915', Synthese 97, 1–31.Google Scholar
  16. Norton, John D.: 1994, 'Science and Certainty', Synthese 99, 3–22.Google Scholar
  17. Planck, Max: 1910, 'Zur Theorie der Wärmestrahlung', Annalen der Physik 31, 758–768.Google Scholar
  18. Planck, Max: 1912, 'Über die Begründung des Gesetzes der schwarzen Strahlung', Annalen der Physik 37, 642–656.Google Scholar
  19. Poincaré, Henri: 1912, 'Sur la théorie des quanta', Journal de Physique théoretique et appliquée 2, 5–34.Google Scholar
  20. Smekal, Adolf: 1926, Allgemeine Grundlagen der Quantenstatistik und Quantentheorie, B. G. Teubner, Leipzig.Google Scholar
  21. Tanaka, Y. et al.: 1995, 'Gravitationally Redshified Emission Implying an Accretion Disk and a Massive Black Hole in the Active Galaxy MCG-6-30-15', Nature 375, 659–661.Google Scholar
  22. Whittaker, E. T.: 1965, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th Ed. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Thomas Bonk
    • 1
  1. 1.Center for Philosophy of ScienceUniversity of SciencePittsburghU.S.A

Personalised recommendations