Synthese

, Volume 110, Issue 1, pp 15–36 | Cite as

HILBERT VINDICATED?

  • JAAKKO Hintikka

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Benacerraf, Paul and Hilary Putnam (eds): 1983, Philosophy of Mathematics, 2nd ed., Cambridge University Press.Google Scholar
  2. Beth, Evert: 1955, 'Semantic Entailment and Formal Derivability', Mededelingen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, N.R., Vol.18, No.13, pp. 309–342.Google Scholar
  3. Curry, Haskell B.: 1954, 'Remarks on the Definition and Nature of Mathematics', Dialectica 8, 228–33; reprinted in Benacerraf and Putnam, 1983, pp. 202- 206.Google Scholar
  4. Dauben, J.W.: 1979, Georg Cantor, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  5. Detlefsen, Michael: 1986, Hilbert's Program, D. Reidel, Dordrecht.Google Scholar
  6. Frege, Gottlob: 1976, in G. Gabriel et al. (eds.),Wissenschaftliche Briefwechsel, F. Meiner, Hamburg.Google Scholar
  7. Goldfarb, Warren: 1979, 'Logic in the Twenties: The Nature of the Quantifier', Journal of Symbolic Logic 44, 351–68.Google Scholar
  8. Henkin, Leon: 1949, 'The Completeness of the First-Order Functional Calculus', Journal of Symbolic Logic 14, 159–66.Google Scholar
  9. Hilbert, David: 1899, Grundlagen der Geometrie, originally in Festschrift zu Feier der Enthüllung des Gauss-Weber-Denkmals, Teubner, Leipzig. Several later revised editions, including second, 1903, seventh, 1930, tenth, 1968.Google Scholar
  10. Hilbert, David: 1990 'Mathematische Probleme', Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Gö ttingen, Math.-phys. Klasse 3, 253–297.Google Scholar
  11. Hilbert, David: 1912, 'Begründung der kinetischen Gastheorie', Mathematische Annalen 72, 562–77.Google Scholar
  12. Hilbert, David: 1918, 'Axiomatisches Denken', Mathematische Annalen 78, 405–15.Google Scholar
  13. Hilbert, David: 1922, 'Neubegründung der Mathematik' ('A New Foundation for Mathematics') Abhandlungen aus dem Mathematischen Seminar der Hamburg Universität 1, 157–177.Google Scholar
  14. Hilbert, David: 1923, 'Die Logische Grundlagen der Mathematik', Mathematische Annalen 88, 151–165.Google Scholar
  15. Hilbert, David: 1926, 'Über das unendliche', Mathematische Annalen 95, 161–190, in P. Benacerraf and H. Putnam (trans./eds.), Philosophy of Mathematics: Selected Readings, 2nd ed., Cambridge University Press, 1983, pp.183- 201, esp. pp.190- 191.Google Scholar
  16. Hilbert, David: 1935, Gesammelte Abhandlungen, Vol. 3, Springer-Verlag, Berlin.Google Scholar
  17. Hilbert, David: 1972 (1912), 'Foundations of the Kinetic Theory of Gases', in Stephen Brush (ed.), Kinetic Theory, Pergamon Press, New York, pp. 89–101. (English translation of the 1912 original.)Google Scholar
  18. Hilbert, David and Paul Bernays: 1934- 1939, Grundlagen der Mathematik, Springer-Verlag, Berlin.Google Scholar
  19. Hintikka, Jaakko: 1955, 'Form and Content in Quantification Theory', Acta Philosopica Fennica 8, 11–55.Google Scholar
  20. Hintikka, Jaakko: 1973, Logic, Language-Games and Information, Clarendon Press, Oxford.Google Scholar
  21. Hintikka, Jaakko: 1995, 'What is Elementary Logic? Independence-Friendly Logic as the True Core Area of Logic', in K. Gavroglu et al. (eds.), Physics, Philosophy and the Scientific Community, Kluwer, Dordrecht, pp. 301–326.Google Scholar
  22. Hintikka, Jaakko: 1996, The Principles of Mathematics Revisited, Cambridge University Press.Google Scholar
  23. Kreisel, Georg: 1958, 'Hilbert's Programme', Dialectica 12, 346—72; reprinted with revisions in Benacerraf and Putnam, 1983, pp. 207- 238.Google Scholar
  24. Leisenring, A.C.: 1969,“-Symbol, MacDonald Technical & Scientific, London.Google Scholar
  25. Peckhaus, Volker: 1990, Hilbertprogramm und Kritische Philosophie, Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  26. Poincaré, Henri: 1902, 'Review of Hilbert's Grundlagen der Geometrie', original French in Bulletin des Sciences Mathématiques 26, 249–272; English translation in Philip Ehrlich (ed.), Real Numbers, Generalizations of the Reals, and Theories of Continua, Kluwer, Dordrecht, 1994, pp. 147- 168.Google Scholar
  27. Russell, Bertrand: 1938, The Principles of Mathematics, 2nd ed. (1st ed. 1903), George Allen & Unwin, London.Google Scholar
  28. Sinac¸eur, Hourya: 1993, 'Du formalisme à la constructivité: Le finitisme', Revue Internationale de Philosophie 47, 251–83.Google Scholar
  29. Tarski, Alfred: 1956, Logic, Semantics, Metamathematics, Clarendon Press, Oxford.Google Scholar
  30. Toepell, M.-M.: 1986a, Über die Entstehung von David Hilbert's'Grundlagen der Geometrie', Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  31. Toepell, M.-M.: 1986b, 'On the Origins of David Hilbert's “Grundlagen der Geometrie”', Archive for the History of Exact Sciences 35, 329–44.Google Scholar
  32. Torretti, Roberto: 1978, Philosophy of Mathematics from Riemann to Poincaré, D. Reidel, Dordrecht.Google Scholar
  33. Walkoe, W. Jr.: 1970, 'Finite Partially Ordered Quantification', Journal of Symbolic Logic 35, 535–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • JAAKKO Hintikka
    • 1
  1. 1.Department of PhilosophyBoston UniversityBostonUSA

Personalised recommendations