Journal of Low Temperature Physics

, Volume 122, Issue 3–4, pp 297–311 | Cite as

The status of the low-temperature phase diagram of hydrogen at the turn of the century

  • Jorge Kohanoff
Article

Abstract

Hydrogen is the simplest element in nature. This simplicity in the atomic state is often assumed to hold also for its condensed phases. Nevertheless, experiments carried out during the past 15 years of the XXth century have shown that this picture is not necessarily a faithful one. Several different low-temperature solid phases have been identified, in contrast with the simplicity idea. These exhibit outstanding features like pressure-independent phonon bands, large isotope effects, and strong infrared activity. In this paper I will give an overview of the current understanding of the low-temperature region of the phase diagram of hydrogen, as emerges from a fruitful cooperative action between diamond anvil cell experiments and first-principles theoretical calculations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).Google Scholar
  2. 2.
    N. H. Chen, E. Sterer, and I. F. Silvera, Phys. Rev. Lett. 76, 1663 (1996).Google Scholar
  3. 3.
    R. J. Hemley et al., Phys. Rev. Lett. 76, 1667 (1996).Google Scholar
  4. 4.
    C. Narayana et al., Nature (London) 393, 46 (1998).Google Scholar
  5. 5.
    H. K. Mao and P. M. Bell, Carnegie Inst. Washington Yearb. 75, 827 (1976).Google Scholar
  6. 6.
    P. Loubeyre et al., Nature 383, 702 (1996).Google Scholar
  7. 7.
    R. J. Hemley and H.-K. Mao, Phys. Rev. Lett. 61, 857 (1988).Google Scholar
  8. 8.
    H. E. Lorenzana et al. Phys. Rev. Lett. 63, 2080 (1989).Google Scholar
  9. 9.
    M. Hanfland, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 70, 3760 (1993).Google Scholar
  10. 10.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
  11. 11.
    D. M. Ceperley and B. J. Alder, Phys. Rev. B 36, 2092 (1987).Google Scholar
  12. 12.
    T. W. Barbee III et al., Phys. Rev. Lett. 62, 1150 (1989), T. W. Barbee III and M. L. Cohen, Phys. Rev. B 44, 11563 (1991).Google Scholar
  13. 13.
    D. Hohl et al., Phys. Rev. Lett. 71, 541 (1993).Google Scholar
  14. 14.
    M. P. Surh, T. W. Barbee III, and C. Mailhiot, Phys. Rev. Lett 70, 4090 (1993).Google Scholar
  15. 15.
    D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996).Google Scholar
  16. 16.
    V. Natoli, R. M. Martin and D. M. Ceperley, Phys. Rev. Lett. 70, 1952 (1993).Google Scholar
  17. 17.
    V. Natoli, R. M. Martin and D. M. Ceperley, Phys. Rev. Lett. 74, 1601 (1995).Google Scholar
  18. 18.
    J. Kohanoff and S. Scandolo, Mat. Res. Soc. Proc. Symp. 499, 329 (1998).Google Scholar
  19. 19.
    I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980).Google Scholar
  20. 20.
    E. G. Brovman, Y. Kagan, and A. Kholas, Sov. Phys. JETP 35, 783 (1972).Google Scholar
  21. 21.
    D. Straus and N. W. Ashcroft, Phys. Rev. Lett. 38, 415 (1977).Google Scholar
  22. 22.
    K. Johnson and N. W. Ashcroft, J. Phys.: Condens. Matter 10, 11135 (1998).Google Scholar
  23. 23.
    J. Van Krankendonk, Solid Hydrogen (Plenum, NY, 1983)Google Scholar
  24. 24.
    L. Cui, N. H. Chen and I. F. Silvera, Phys. Rev. B 51, 14987 (1995).Google Scholar
  25. 25.
    K. J. Runge et al., Phys. Rev. Lett. 69, 3527 (1992).Google Scholar
  26. 26.
    E. Kaxiras and Z. Guo, Phys. Rev. B 49, 11822 (1994).Google Scholar
  27. 27.
    H. Kitamura et al., Nature (London) 404, 259 (2000).Google Scholar
  28. 28.
    H. K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).Google Scholar
  29. 29.
    A. F. Goncharov et al., Phys. Rev. Lett. 80, 101 (1998).Google Scholar
  30. 30.
    A. I. Kitaigorodskii and K. V. Mirskaya, Sov. Phys.-Cryst. 10, 121 (1965).Google Scholar
  31. 31.
    H. Miyagi and T. Nakamura, Prog. Theor. Phys. 37, 641 (1967).Google Scholar
  32. 32.
    H. M. James, Phys. Rev. 167, 862 (1968).Google Scholar
  33. 33.
    H. Nagara and T. Nakamura, Phys. Rev. Lett. 68, 2468 (1992).Google Scholar
  34. 34.
    J. Kohanoff et al., Phys. Rev. Lett. 78, 2783 (1997).Google Scholar
  35. 35.
    E. Kaxiras and J. Broughton, Europhys. Lett. 17, 151 (1992).Google Scholar
  36. 36.
    B. Edwards and N. W. Ashcroft, Nature (London) 388, 352 (1997).Google Scholar
  37. 37.
    K. Johnson and N. W. Ashcroft, Nature (London) 403, 632 (2000).Google Scholar
  38. 38.
    S. de Gironcoli (private communication).Google Scholar
  39. 39.
    S. Biermann, D. Hohl, and D. Marx, J. Low Temp. Phys. 110, 97 (1998).Google Scholar
  40. 40.
    R. J. Hemley et al., Europhys. Lett. 37, 403 (1997).Google Scholar
  41. 41.
    I. I. Mazin et al., Phys. Rev. Lett. 78, 1066 (1997).Google Scholar
  42. 42.
    J. S. Tse and D. D. Klug, Nature 378, 595 (1995).Google Scholar
  43. 43.
    B. Edwards, N. W. Ashcroft, and T. Lenosky, Europhys. Lett. 34, 519 (1996).Google Scholar
  44. 44.
    I. Souza and R. M. Martin, Phys. Rev. Lett. 81, 4452 (1998).Google Scholar
  45. 45.
    J. Kohanoff et al., Phys. Rev. Lett. 83, 4097 (1999).Google Scholar
  46. 46.
    A. Alavi, Phil. Trans. R. Soc. Lond. A 356, 263 (1998).Google Scholar
  47. 47.
    B. Edwards, PhD thesis (Cornell 1997).Google Scholar
  48. 48.
    P. Focher et al., Europhys. Lett. 36, 345 (1994).Google Scholar
  49. 49.
    S. Baroni, P. Giannozzi and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).Google Scholar
  50. 50.
    A. Goncharov (private communication).Google Scholar
  51. 51.
    H. Chacham and S. G. Louie, Phys. Rev. Lett. 66, 64 (1991).Google Scholar
  52. 52.
    M. Städele and R. M. Martin, Phys. Rev. Lett. 84, 6070 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Jorge Kohanoff
    • 1
  1. 1.Atomistic Simulation GroupThe Queen's University of Belfast, BelfastNorthern IrelandUK

Personalised recommendations