Journal of Materials Science

, Volume 36, Issue 4, pp 901–907 | Cite as

Chemical synthesis and sintering behaviour of highly dispersed W/Cu composite powders

  • G. Gusmano
  • A. Bianco
  • R. Polini
  • P. Magistris
  • G. Marcheselli


The paper reports the preparation of W/Cu composite powders by a wet process based on the reduction of selected copper precursors in ethylene glycol and in the presence of tungsten powders. Reactions were performed in different conditions of temperature, time and concentration of the copper precursor. Two different Cu compounds, Cu(AcO)2·H2O and CuO (coarse or fine) and two W powders (coarse or fine) were used. The reaction yields ranged from 75% to 98%. Dense bodies (up to 97% fractional density) with highly homogeneous microstructure as well as high electrical conductivity (up to 41% IACS) were obtained by sintering W/Cu powders at 1350 °C.


Polymer Copper Ethylene Microstructure Electrical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Houck, L. P. Dorfman and M. Paliwal, in Proceedings of the 7th International Tungsten Symposium of the International Tungsten Industry Association, Goslar, Germany, September 1996, p. 390.Google Scholar
  2. 2.
    R. M. German, “Sintering Theory and Practice” (John Wiley & Sons, New York, 1996).Google Scholar
  3. 3.
    A. K. Basu and F. R. Sale, J. Mater. Sci. 13 (1978) 2703.Google Scholar
  4. 4.
    J. S. Lee and T. H. Kim, NanoStructured Materials 6 (1995) 691.Google Scholar
  5. 5.
    L. P. Dorfman, M. J. Scheithauer, D. L. Houck and N.E. Kopatz, U.S. Patent 5 468 457 (1995).Google Scholar
  6. 6.
    Idem., U.S. Patent 5 470 549 (1995).Google Scholar
  7. 7.
    D. E. Jech, J. L. Sepulveda and A. B. Traversone, U.S. Patent 5 686 676 (1997).Google Scholar
  8. 8.
    M. Figlarz, F. Fievet and J. P. Lagier, European Patent 0 113 281 (1987).Google Scholar
  9. 9.
    F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics 32/33 (1989) 198.Google Scholar
  10. 10.
    C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, J. Solid State Chem. 100 (1992) 272.Google Scholar
  11. 11.
    L. K. Kurihara, G. M. Chow and P. E. Schoen, NanoStructured Materials 5 (1995) 607.Google Scholar
  12. 12.
    Idem., J. Mater. Res. 10 (1995) 1546.Google Scholar
  13. 13.
    A. Bianco, G. Gusmano, R. Montanari, G. Montesperelli and E. Traversa, Materials Letters 19 (1994) 263.Google Scholar
  14. 14.
    Idem., Thermochimica Acta 269/270 (1995) 117.Google Scholar
  15. 15.
    B. Morten, M. Prudenziati, G. De cicco, A. Bianco, G. Montesperelli and G. Gusmano, Meas. Sci. Technol. 8 (1997) 21.Google Scholar
  16. 16.
    A. Bianco, G. Gusmano, G. Montesperelli, M. Prudenziati, B. Morten, R. Zanoni and G. Righini, Thin Solid Films 359 (2000) 21.Google Scholar
  17. 17.
    A. F. Clifford, “Inorganic Chemistry of Qualitative Analysis” (Prentice-Hall, N.J., 1961).Google Scholar
  18. 18.
    P. Lattari, J. Gardner and H. Wiegard, “Metals Handbook, Vol. 2” (ASM International, USA, 1990) p. 822.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Gusmano
    • 1
  • A. Bianco
    • 1
  • R. Polini
    • 1
  • P. Magistris
    • 2
  • G. Marcheselli
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversită di Roma “Tor Vergata”RomaItaly
  2. 2.CELSIA SpAAnzola d'OssolaItaly

Personalised recommendations