Advertisement

Journal of Materials Science

, Volume 36, Issue 3, pp 703–713 | Cite as

Change in bulk and surface structure of mixed MoO3-ZnO oxide by heat treatment in air and in hydrogen

  • Noriyuki Sotani
  • Takashi Suzuki
  • Kentaro Nakamura
  • Kazuo Eda
  • Sadao Hasegawa
Article

Abstract

The mixed MoO3-ZnO oxides with various mole fraction of Mo, XMo, obtained by the impregnation method were heated in air and in hydrogen. As for the mixed oxide heated in air, MoO3 reactedstoichiometrically with ZnO to give ZnMoO4 at XMo < 0.5, while at XMo > 0.5, the reaction did not proceed completely. On the other hand, for the mixed oxide heated in hydrogen, at XMo < 0.5 ZnMoO4 was reduced to ZnMoO3 with the anion vacancy, while at XMo > 0.5, MoO3 was reduced to MoO2 and ZnMoO4 was difficult to be reduced to ZnMoO3. The structure of the surface and/or near the surface was different from the bulk structure.

Keywords

Oxide Hydrogen Polymer Heat Treatment Mole Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Haber, “The Role of Molybdenum in Catalysis” (Climax Molybdenum Co., Ann Arbor, MI, 1981).Google Scholar
  2. 2.
    K. Segawa and I. E. Wachs, in “Characterization of Catalytic Materials,” edited I. E. Wachs (Buterworth-Heinemann, Boston, 1992) p. 72.Google Scholar
  3. 3.
    J. R. Bartlett and R. P. Cooney, in “Spectroscopy of Inorganic-Based Materials,” edited by R. J. H. Clark and R. E. Hester (John Wiley and Sons, New York, 1987) p. 187.Google Scholar
  4. 4.
    O. H. Han, C. Y. Lin, N. Sustache, M. McMillan, J. D. Carruthers, K. W. Zilm and G. L. Haller, Appl. Catal. A: Gen. 98 (1993) 195.Google Scholar
  5. 5.
    J. M. Stencel, “Raman Spectroscopy for Catalysis” (Van Norstrand Reinhold, New York, 1990) p. 51.Google Scholar
  6. 6.
    _J. Medema, C. von Stam, V. H. J. De Beer, A. J. A. Konings and D. C. Koningsberger, J. Catal. 53 (1978) 386.Google Scholar
  7. 7.
    C. C. Williams, J. G. Ekerdt, J.-M. Jehng, F. D. Hardcastle and I. E. Wachs, J. Phys. Chem. 95 (1991) 8791.Google Scholar
  8. 8.
    L. Rodrigo, K. Marcinkowska, A. Adnot, P. C. Roberge, S. K. Kaliaguine, J. M. Stencel, L. E. Makovsky and J. R. Diehe, ibid. 90 (1986) 2670.Google Scholar
  9. 9.
    A. K. Datta, J. W. Ha and J. W. Regalbuto, J. Catal. 133 (1992) 55.Google Scholar
  10. 10.
    N. Spanos, H. K. Matralis, C. Kordulis and A. Lycouroghiotis, ibid. 136 (1992) 432.Google Scholar
  11. 11.
    T. Machej, J. Haber, A. M. Turek and T. E. Wachs, Appl. Catal. 70 (1991) 115.Google Scholar
  12. 12.
    T. Ono, H. Miyata and K. Kubokawa, J. Chem. Soc. Faraday Trans. I 83 (1987) 176.Google Scholar
  13. 13.
    H. Miyata, S. Tokuda, T. Ono, T. Ohno and F. Hatayama, ibid. 86 (1990) 229.Google Scholar
  14. 14.
    C. Mortera, A. Zecchina and G. Costa (eds.), “Structure of Surface” (Elsevier, Amsterudam, 1989) p. 525.Google Scholar
  15. 15.
    J.-M. Jehug, A. M. Turek and I. E. Wachs, Appl. Catal. A: Gen. 83 (1992) 179.Google Scholar
  16. 16.
    H. Hu, I. E. Wachs and S. R. Bare, J. Phys. Chem. 99 (1995) 10897.Google Scholar
  17. 17.
    G. Deo and I. E. Wachs, ibid. 95 (1991) 5889.Google Scholar
  18. 18.
    Gil-Llambias, J. Catal. 135 (1992) 1.Google Scholar
  19. 19.
    A. Nishiyama, N. Kosugi and H. Kuroda, ibid. 135 (1992) 746.Google Scholar
  20. 20.
    H. Aritani, T. Tanaka, T. Funabiki, S. Yoshida, M. Kudo and S. Hasegawa, J. Phys. Chem. 100 (1996) 5440.Google Scholar
  21. 21.
    H. Aritani, T. Tanaka, T. Funabiki, S. Yoshida, N. Sotani, K. Eda and S. Hasegawa, ibid. 100 (1996) 19495.Google Scholar
  22. 22.
    R. J. Kokes, ibid. 66 (1962) 99.Google Scholar
  23. 23.
    H. Saltsburg and D. P. Snowden, ibid. 68 (1964) 2734.Google Scholar
  24. 24.
    K. M. Saucier and T. Freund, J. Catal. 3 (1964) 293.Google Scholar
  25. 25.
    K. Nakamura, K. Eda and N. Sotani, Applied Catalysis A, Gene. 178 (1999) 167.Google Scholar
  26. 26.
    M. Che, F. Figueras, M. Forissier, J. C. McAteer, M. Perrin, J. I. Portefaix and H. Praliaud, in Proceedings VIth Int. Congr. Catal. (The Chemical Society, London, 1977) Vol. I, p. 261.Google Scholar
  27. 27.
    R. F. Howe and I. R. Leith, J. Chem. Soc. Faraday Trans. I 69 (1973) 1967.Google Scholar
  28. 28.
    C. Louis and M. Che, J. Phys. Chem. 91 (1987) 2875.Google Scholar
  29. 29.
    A. Latef, C. F. Aissi and M. Guelton, J. Catal. 119 (1989) 368.Google Scholar
  30. 30.
    M. Codell and H. Gisser, J. Phys. Chem. 72 (1968) 2460.Google Scholar
  31. 31.
    J. H. Lunsford and J. P. Jayne, ibid. 44 (1966) 1487.Google Scholar
  32. 32.
    K. Hoffmann and D. Hahn, Phys. Stat. Sol. (a) 24 (1974) 637.Google Scholar
  33. 33.
    A. Manthiram and J. Gopalakrishnan, Mat. Res. Bull. 15 (1980) 207.Google Scholar
  34. 34.
    K. Dyrek and M. Labanowska, J. Chem. Soc. Faraday Trans. 87 (1991) 1003.Google Scholar
  35. 35.
    J. Evans, W. Frederick and W. Mosselmans, J. Phys. Chem. 95 (1991) 9673.Google Scholar
  36. 36.
    G. N. George, W. E. Cleland, J. H. Enemark, B. E. Smith, C. A. Kipke, S. A. Roberts and S. P. Cramer, J. Amer. Chem. Soc. 112 (1990) 2541.Google Scholar
  37. 37.
    H. Hu, I. E. Wachs and S. R. Bare, J. Phys. Chem. 99 (1995) 10897.Google Scholar
  38. 38.
    S. R. Bare, G. E. Mitchell, J. J. Maj, G. E. Vrieland and J. L. Gland, ibid. 97 (1993) 6048.Google Scholar
  39. 39.
    K. Nakamura, K. Eda and N. Sotani, Bull. Chem. Soc. Jpn. 71 (1998) 2063.Google Scholar
  40. 40.
    A. Erbil, G. S. Cargill, R. Frahm and R. F. Boehme, Phys. Rev. B 37 (1988) 2450.Google Scholar
  41. 41.
    S. C. Abrahams, J. Chem. Phys. 46 (1967) 2052.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Noriyuki Sotani
    • 1
  • Takashi Suzuki
    • 1
  • Kentaro Nakamura
    • 1
  • Kazuo Eda
    • 1
  • Sadao Hasegawa
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceKobe UniversityNada, KobeJapan
  2. 2.Department of ChemistryTokyo Gakugei UniversityKoganei-shi, TokyoJapan

Personalised recommendations