Journal of Materials Science

, Volume 35, Issue 16, pp 4177–4183 | Cite as

Unusual dysprosium ceramic nano-fiber growth in a supercritical aqueous solution

  • M. M. Hoffmann
  • J. S. Young
  • J. L. Fulton
Article

Abstract

The formation of nano-size ceramic fibers having diameters as small as 20 nm is described. This material was obtained by a simple precipitation reaction from a supercritical aqueous dysprosium bromide solution at high temperatures (450°C). The nano-structures have unusually high structural stability for extended time periods in this extreme solvent environment. The experimental procedures are described and analysis of the materials by scanning and transition electron microscopy, and x-ray diffraction is presented. The new materials may have useful applications as high-strength, corrosion resistant materials or as stable catalyst supports for extreme conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Matson, J. L. Fulton, R. C. Petersen and R. D. Smith, Ind. Eng. Chem. Res. 26 (1987) 2298.Google Scholar
  2. 2.
    D. M. Matson, R. C. Petersen and R. D. Smith, J. Mat. Sci. 22 (1987) 1919.Google Scholar
  3. 3.
    D. W. Matson, J. C. Linehan and R. M. Bean, Mat. Lett. 14 (1992) 222.Google Scholar
  4. 4.
    T. Adschiri, K. Kanazawa and K. Arai, J. Am. Ceram. Soc. 75 (1992) 1019.Google Scholar
  5. 5.
    J. G. Darab and D. W. Matson, J. Electronic Material, 27 (1998) 1068.Google Scholar
  6. 6.
    D. W. Matson, J. G. Darab, T. D. Brewer and P. D. Kaviratna, Mat. Res. Soc. Symp. Proc. 520 (1998) 287.Google Scholar
  7. 7.
    J. G. Darab, Mat. Res. Soc. Symp. Proc. 520 (1998) 161.Google Scholar
  8. 8.
    W. J. Dawson, Ceramic Bulletin 67 (1988) 1673.Google Scholar
  9. 9.
    X. Wang, Y. Wang and J. Zhihao, Xiyou Jinshu Cailiao Yo Gongcheng 24 (1995) 1.Google Scholar
  10. 10.
    T. Oota, J. Saito and I. Yamai, J. Crystal Growth 46 (1979) 331.Google Scholar
  11. 11.
    H. Izawa, S. Kikkawa and M. Koizumi, Funtai oyobi Funmatsu Yakin 33 (1986) 353.Google Scholar
  12. 12.
    A. D. Fedoseev, T. A. Makarova, N. I. Nestercuk and D. P. Sipovskij, Kristall und Technik 3 (1968) 95.Google Scholar
  13. 13.
    M. Yoshimura, H. Suda, K. Okamoto and K. Ioku, J. Mater. Sci. 29 (1994) 3399.Google Scholar
  14. 14.
    A. De Kozak, M. SamouËl and A. Erb, Rev. Chim. Miner. 17 (1980) 440.Google Scholar
  15. 15.
    S. Jagota and R. Raj, J. Crystal Growth 85 (1987) 527.Google Scholar
  16. 16.
    P. M. Bridenbaugh, J. O. Eckert, G. Nykolak, G. Thomas, W. Wilson, L. M. Demianets, R. Riman and R. A. Laudise, J. Crystal Growth 144 (1994) 243.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. M. Hoffmann
    • 1
  • J. S. Young
    • 1
  • J. L. Fulton
    • 2
  1. 1.Environmental and Health Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Environmental and Health Sciences DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations