Journal of Materials Science

, Volume 36, Issue 3, pp 791–793 | Cite as

Chitosan-based electrolyte for secondary lithium cells

  • A. K. Arof
  • Z. Osman
  • N. M. Morni
  • N. Kamarulzaman
  • Z. A. Ibrahim
  • M. R. Muhamad


The system chitosan : ethylene carbonate : LiCF3SO3 was prepared by the solution cast technique. To verify that the conductivity of the material is due to the salt, the electrical conductivity at room temperature of the chitosan acetate film and that of the chitosan acetate films containing different amounts of ethylene carbonate added to it were measured. The order of magnitude of the electrical conductivity was 10−10 S cm−1. Films containing fixed content of chitosan and plasticizer but different amounts of salt were then prepared in the same manner and the highest electrical conductivity obtained was 1.3 × 10−5 S cm−1 at room temperature. These results indicate that the conductivity is due to the salt. Conductivity-temperature studies show that the ln σ T versus 103/T graphs obey Arrhenius rule implying that the conductivity occurs by way of some thermally assisted mechanism. Polarization current measurement shows that the lithium ion transference number is ∼0.09. A LiMn2O4/chitosan-LiCF3SO3/C cell was fabricated which cycled between 1.5 to 2.5 V with fading capacity. This could be the result of LiF formation due to interaction between the salt and the fluorine in the binding agent.


Electrical Conductivity Chitosan Solution Cast Ethylene Carbonate Transference Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Arof, N. M. Morni and M. A. Yarmo, Mater. Sci. & Engg. B 55 (1998) 130.Google Scholar
  2. 2.
    R. H. Y. Subban and A. K. Arof, Physica Scripta 53 (1996) 382.Google Scholar
  3. 3.
    N. S. Mohamed, R. H. Y. Subban and A. K. Arof, J. Power Sources 56 (1995) 153.Google Scholar
  4. 4.
    R. H. Y. Subban, A. K. Arof and S. Radhakrishna, Mater. Sci. & Engg. B 38 (1996) 156.Google Scholar
  5. 5.
    N. M. Morni, N. S. Mohamed and A. K. Arof, Mater. Sci. & Engg. B 45 (1997) 140.Google Scholar
  6. 6.
    N. M. Morni and A. K. Arof, J. Power Sources 77 (1999) 42.Google Scholar
  7. 7.
    R. G. Linford, in “Solid State Ionics Devices,” edited by B. V. R. Chowdari and S. Radhakrishna (World Scientific, Singapore, 1988). pp. 551–571.Google Scholar
  8. 8.
    K. Sakurai, T. Maegawa and T. Takahashi, in “Chitin and Chitosan: Environmental Friendly and Versatile Biomaterials,” edited by W. F. Stevens, M. S. Rao and S. Chandrkachang (Asian Institute of Technology, Bangkok, Thailand, 1996) pp. 224–227.Google Scholar
  9. 9.
    S. Ramesh and A. K. Arof, Solid State Ionics, in press.Google Scholar
  10. 10.
    M. Watanabe and A. Nishimoto, ibid. 79 (1996) 306.Google Scholar
  11. 11.
    G. Sandi, R. E. Gerald I I, L. G. Scanlon, C. S. Johnson, R. J. Klinger and J. W. Rathke, J. New Mater. for Electrechem. Syst 3 (2000) 13.Google Scholar
  12. 12.
    J. Jansta and F. P. Dousek, Electrochim. Acta 18 (1973) 674.Google Scholar
  13. 13.
    F. P. Dousek and J. Jansta, ibid. 20 (1975) 1.Google Scholar
  14. 14.
    J. P. Gabano, in “Lithium Batteries,” edited by J. P. Gabano (Academic, London, UK, 1983) p. 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A. K. Arof
    • 1
  • Z. Osman
    • 1
  • N. M. Morni
    • 2
  • N. Kamarulzaman
    • 3
  • Z. A. Ibrahim
    • 1
  • M. R. Muhamad
    • 1
  1. 1.Physics DepartmentUniversity of MalayaMalaysia
  2. 2.Institut Tun Hussein OnnBatu Pahat, Johor Darul TakzimMalaysia
  3. 3.Faculty of ScienceUniversity Technology MARAShah Alam, SelangorMalaysia

Personalised recommendations