Siberian Mathematical Journal

, Volume 42, Issue 1, pp 190–204 | Cite as

On Automorphism Groups of Cyclically Ordered Sets

  • V. M. Tararin


Automorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rieger L. S., “On the ordered and cyclically ordered groups. I-III,” Věstnik Král. České Spol. Nauk, I: No. 6, 1–31 (1946); II: No. 1, 1–33 (1947); III: No. 1, 1–26 (1948).Google Scholar
  2. 2.
    Fuchs L., Partially Ordered Algebraic Systems [Russian translation], Mir, Moscow (1965).Google Scholar
  3. 3.
    Kopytov V. M., Lattice-Ordered Groups [Russian], Nauka, Moscow (1984).Google Scholar
  4. 4.
    Holland W. Ch., “Transitive lattice-ordered groups,” Math. Z., 87, No. 3, 420–434 (1965).Google Scholar
  5. 5.
    McCleary S. H., “O-primitive ordered permutation groups,” Pacific J. Math., 40, No. 2, 349–372 (1972).Google Scholar
  6. 6.
    McCleary S. H., “O-primitive ordered permutation groups. II,” Pacific J. Math., 49, No. 2, 431–445 (1973).Google Scholar
  7. 7.
    Suprunenko D. A., Matrix Groups [Russian], Nauka, Moscow (1972).Google Scholar
  8. 8.
    HÖlder O., “Die Axiome Quantität und die Lehre vom Mass,” Ber. Verh. Sächs. Wiss. Leipzig, Math.-Phis. C1, Bd 53, 1–64 (1901).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • V. M. Tararin
    • 1
  1. 1.Institute for Applied Mathematical StudiesPetrozavodsk

Personalised recommendations