Journal of Materials Science

, Volume 35, Issue 15, pp 3767–3784 | Cite as

CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties

  • Ph. Toneguzzo
  • G. Viau
  • O. Acher
  • F. Guillet
  • E. Bruneton
  • F. Fievet-Vincent
  • F. Fievet
Article

Abstract

Spherical and monodisperse CoxNi100 − x and Fez[CoxNi100 − x]1 − z particles are synthezied by the polyol process over a wide size range (lying from a few micrometers to a few tens of nanometers). The whole physico-chemical characterizations, i.e. dark-field image by TEM, SAED, density, saturation magnetization and chemical analysis, are consistent with a “core-shell” model. In the CoxNi100 − x system, the particles are constituted by a ferromagnetic, almost pure and dense core surrounded by a thin coating composed of metal oxides and metallo-organic phases. On the contrary, in the Fe[CoxNi100 − x]1 − z system, the ferromagnetic core is polycrystalline, slightly porous and retains impurities in higher content, the superficial layer having almost the same composition as in the Co-Ni system, but being twice more thick. The microwave permeability of the CoxNi100 − x and Fez[CoxNi100 − x]1 − z particles, previously insulated by a superficial treatment and then mechanically compacted, is investigated in the 100 MHz-18 GHz frequency range. Whatever the composition, submicrometer-sized particles show several narrow resonance bands which are interpreted as non uniform exchange resonance modes. Iron-based particles have lower resonance frequencies than iron-free powders; they also have higher permeability levels despite their lower cristallinity and their higher impurity content. A mild thermal treatment allows to increase this permeability by eliminating the metallo-organic impurities without modifying the morphology of the particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Matijevic, Faraday Discuss. 92 (1991) 229.Google Scholar
  2. 2.
    W. Wernsdorfer, E. B. Orozco, B. Barbara, K. Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J. E. Wegrowe, J.-P. Ansermet, N. Demoncy, H. Pascard, A. Loiseau, L. Francois, N. Duxin and M.-P. Pileni, J. Appl. Phys. 81 (1997) 5543.Google Scholar
  3. 3.
    K. V. P. M. Shafi, A. Gedanken and R. Prozorov, Adv. Mater. 10 (1998) 590.Google Scholar
  4. 4.
    B. Morten, M. Prudenziati, G. De Cicco, A. Bianco, G. Montesperelli and G. Gusmano, Meas. Sci. Technol. 8 (1997) 21.Google Scholar
  5. 5.
    H. Pastor, M. Bonneau and J. Pilot, in International Conference on Advances in Hard Materials Production, Bonn, 1992.Google Scholar
  6. 6.
    S. Gangopadhyay, Y. Yang, G. C. Hadjipanayis, V. Papaefthymiou, C. M. Sorensen and K. J. Klabunde, J. Appl. Phys. 76 (1994) 6319.Google Scholar
  7. 7.
    X. Bao, F. Li and R. M. Metzger, ibid. 79 (1996) 4866.Google Scholar
  8. 8.
    C. F. Kerznizan, K. J. Klabunde, C. M. Sorensen and G. C. Hadjipanayis, ibid. 67 (1990) 5897.Google Scholar
  9. 9.
    S. Eroglu, S. C. Zhang and G. L. Messing, J. Mater. Res. 11 (1996) 2131.Google Scholar
  10. 10.
    K. V. P. M. Shafi, A. Gedanken and R. Prozorov, J. Mater. Chem. 8 (1998) 769.Google Scholar
  11. 11.
    M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens and B. Chaudret, Phys. Rev. B 57 (1998) 2925.Google Scholar
  12. 12.
    R. S. Sapieszko and E. Matijevic, Corrosion 36 (1980) 522.Google Scholar
  13. 13.
    F. Fievet, J.-P. Lagier and M. Figlarz, in Proceedings of the Powder Metallurgy World Congress, Paris, June 1994 (Les Editions de Physique, Les Ulis, 1994) Vol. 1, p. 281.Google Scholar
  14. 14.
    J. P. Chen, C. M. Sorensen, K. J. Klabunde and G. C. Hadjipanayis, J. Appl. Phys. 76 (1994) 6316.Google Scholar
  15. 15.
    C. Petit, A. Taleb and M.-P. Pileni, J. Phys. Chem. B 103 (1999) 1805.Google Scholar
  16. 16.
    F. Fievet, J.-P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ionics 32/33 (1989) 198.Google Scholar
  17. 17.
    G. Viau, F. Fievet-Vincent and F. Fievet, J. Mater. Chem. 6 (1996) 1047.Google Scholar
  18. 18.
    G. Viau, Ph.D. thesis, Paris 7-Denis Diderot University, Paris, 1995.Google Scholar
  19. 19.
    PH. Toneguzzo, Ph.D. thesis, Paris 7-Denis Diderot University, Paris, 1997.Google Scholar
  20. 20.
    G. Viau, F. Fievet-Vincent, F. Fievet, PH. Toneguzzo, F. Ravel and O. Acher, J. Appl. Phys. 81 (1997) 2749.Google Scholar
  21. 21.
    PH. Toneguzzo, G. Viau, O. Acher, F. Fievetvincent and F. Fievet, Adv. Mater. 10 (1998) 1032.Google Scholar
  22. 22.
    M. Kishimoto, S. Kitahata and M. Amemiya, IEEE Trans. Magn. 22 (1986) 732.Google Scholar
  23. 23.
    A. M. Homola, M. R. Lorenz, C. J. Mastrangelo and T. L. Tilbury, ibid. 22 (1986) 716.Google Scholar
  24. 24.
    T. Ishikawa and E. Matijevic, Langmuir 4 (1988) 26.Google Scholar
  25. 25.
    L. Kocon, H. Lacampagne and P. Latare, in Proceedings of the Powder Metallurgy World Congress, Paris, June 1994 (Les Editions de Physique, Les Ulis, 1994) Vol. 3, p. 1823.Google Scholar
  26. 26.
    H. P. Klug and L. E. Alexander, in “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,” 2nd Ed. (John Wiley & Sons, New York, 1974) Ch. 8, p. 566.Google Scholar
  27. 27.
    G. K. Williamson and W. H. Hall, Acta Metal. 1 (1953) 22.Google Scholar
  28. 28.
    F. E. Luborski, J. Appl. Phys. 32 (1961) 1715.Google Scholar
  29. 29.
    S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen and K. J. Klabunde, IEEE Trans. Magn. 28 (1992) 3174.Google Scholar
  30. 30.
    Y. Li, W. Gong, G. C. Hadjipanayis, C. M. Sorensen, K. J. Klabunde, V. Papaefthymiou, A. Kostikas and A. Simopoulos, J. Magn. Magn. Mat. 130 (1994) 261.Google Scholar
  31. 31.
    G. C. Hadjipanayis, S. Gangopadhyay, L. Yiping, C. M. Sorensen and K. J. Klabunde, in “Science and Technology of Nanostructured Magnetic Materials,” edited by G. C. Hadjipanayis and G. A. Prinz (Plenum Press, New York, 1991) p. 497.Google Scholar
  32. 32.
    S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen and K. J. Klabunde, IEEE Trans. Magn. 29 (1993) 2602.Google Scholar
  33. 33.
    F. T. Parker and A. E. Berkowitz, Phys. Rev. B 44 (1991) 7437.Google Scholar
  34. 34.
    S. Gangopadhyay, G. C. Hadjipanayis, B. Dale, C. M. Sorensen, K. J. Klabunde, V. Papaefthymiou and A. Kostikas, ibid. 45 (1992) 9778.Google Scholar
  35. 35.
    “Handbook of Chemistry and Physics,” 76th ed., edited by D. R. Lide (C.R.C. Press, New-York, 1995-96).Google Scholar
  36. 36.
    I. Tamura and M. Hayashi, Surf. Sci 146 (1984) 501.Google Scholar
  37. 37.
    T. Shinjo, T. Shigematsu, N. Hosaito, T. Iwasaki and T. Takai, Jpn. J. Appl. Phys. 21 (1980) L220.Google Scholar
  38. 38.
    Landolt-BÖrnstein, in “Magnetic Properties,” New Series III/19A (Springer, Berlin, 1982).Google Scholar
  39. 39.
    A. Taylor, J. Inst. Metals 77 (1950) 585.Google Scholar
  40. 40.
    X ray powder data file J.C.P.D.S., No.4-850, No. 15-806.Google Scholar
  41. 41.
    “Constitution of Binary Alloys,” 2nd ed., edited by M. Hansen, R. P. Helliot and K. Anderkop (McGraw Hill, New York, 1985) and Refs therein.Google Scholar
  42. 42.
    M. Figlarz, F. Vincent, C. Lecaille and J. Amiel, Powder Technol. 1 (1967) 121.Google Scholar
  43. 43.
    G. Viau, F. Fievet-Vincent and F. Fievet, Solid State Ionics 84 (1996) 259.Google Scholar
  44. 44.
    PH. Toneguzzo, O. Acher, G. Viau, F. Fievetvincent and F. Fievet, J. Appl. Phys. 81 (1997) 5546.Google Scholar
  45. 45.
    A. Aharoni, ibid. 69 (1991) 7762.Google Scholar
  46. 46.
    Idem., ibid. 81 (1997) 830.Google Scholar
  47. 47.
    Idem., in “Introduction to the Theory of Ferromagnetism” (Clarendon Press, Oxford, 1996), Ch. 8, p. 181.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ph. Toneguzzo
    • 1
  • G. Viau
    • 2
  • O. Acher
    • 1
  • F. Guillet
    • 1
  • E. Bruneton
    • 1
  • F. Fievet-Vincent
    • 3
  • F. Fievet
    • 3
  1. 1.CEA, Le RipaultMontsFrance
  2. 2.Laboratoire de Chimie des Matériaux Divisés et CatalyseUniversité Paris 7-Denis DiderotParis Cedex 05France
  3. 3.Laboratoire de Chimie des Matériaux Divisés et CatalyseUniversité Paris 7-Denis DiderotParis Cedex 05France

Personalised recommendations