Journal of Statistical Physics

, Volume 102, Issue 3–4, pp 865–881 | Cite as

Enumerations of Lattice Animals and Trees

  • Iwan Jensen


We have developed an improved algorithm that allows us to enumerate the number of site animals on the square lattice up to size 46. We also calculate the number of lattice trees up to size 44 and the radius of gyration of both lattice animals and trees up to size 42. Analysis of the resulting series yields an improved estimate, λ=4.062570(8), for the growth constant of lattice animals, and, λ0=3.795254(8), for the growth constant of trees, and confirms to a very high degree of certainty that both the animal and tree generating functions have a logarithmic divergence. Analysis of the radius of gyration series yields the estimate, ν=0.64115(5), for the size exponent.

lattice animals exact enumeration computer algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Golomb, Polyominoes: Puzzles, Patterns, Problems and Packings, 2nd ed. (Princeton U.P, Princeton, New Jersey, 1994).Google Scholar
  2. 2.
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Taylor & Francis, London, 1992).Google Scholar
  3. 3.
    C. Domb, Nature 184:509 (1959).Google Scholar
  4. 4.
    M. F. Sykes and M. Glen, J. Phys. A 9:87 (1976).Google Scholar
  5. 5.
    W. F. Lunnon, in Computers in Number Theory, A. O. L. Atkin and B. J. Birch, eds. (Academic Press, London, 1971).Google Scholar
  6. 6.
    J. L. Martin, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974).Google Scholar
  7. 7.
    D. H. Redelmeier, Disc. Math. 36:191 (1981).Google Scholar
  8. 8.
    S. Redner, J. Stat. Phys. 29:309 (1982).Google Scholar
  9. 9.
    J. L. Martin, J. Stat. Phys. 58:749 (1990).Google Scholar
  10. 10.
    S. Mertens, J. Stat. Phys. 58:1095 (1990).Google Scholar
  11. 11.
    S. Mertens and M. E. Lautenbacher, J. Stat. Phys. 66:669 (1992).Google Scholar
  12. 12.
    A. R. Conway, J. Phys. A. 28:335 (1995).Google Scholar
  13. 13.
    T. Lubensky and J. Isaacson, Phys. Rev. A 20:2130 (1979).Google Scholar
  14. 14.
    J. A. M. S. Duarte and H. J. Ruskin, J. Phys. (Paris) 42:1588 (1981).Google Scholar
  15. 15.
    A. R. Conway and A. J. Guttmann, J. Phys. A. 28:891 (1995).Google Scholar
  16. 16.
    T. Oliveira e Silva, Scholar
  17. 17.
    I. G. Enting, J. Phys. A. 13:3713 (1980).Google Scholar
  18. 18.
    B. Derrida and L. De Seze, J. Physique 43:475 (1982).Google Scholar
  19. 19.
    K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searching, EATCS Monographs on Theoretical Computer Science (Springer-Verlag, Berlin, 1984).Google Scholar
  20. 20.
    D. E. Knuth, Seminumerical Algorithms (The Art of Computer Programming 2) (Addison_Wesley, Reading, Massachusetts, 1969).Google Scholar
  21. 21.
    I. Jensen and A. J. Guttmann, J. Phys. A 33:L257 (2000).Google Scholar
  22. 22.
    A. J. Guttmann, in Phase Transitions and Critical Phenomena, Vol. 13, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1989).Google Scholar
  23. 23.
    S. You and E. J. Janse van Rensburg, Phys. Rev. E 58:3971 (1998).Google Scholar
  24. 24.
    B. M. I. Rands and D. J. A. Welsh, IAM J. Appl. Math. 27:1 (1981).Google Scholar
  25. 25.
    S. G. Whittington and C. E. Soteros, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. (Clarendon Press, Oxford, 1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Iwan Jensen
    • 1
  1. 1.Department of Mathematics and StatisticsThe University of MelbourneAustralia

Personalised recommendations