Journal of Statistical Physics

, Volume 102, Issue 5–6, pp 1383–1405 | Cite as

Interferencing in Coupled Bose–Einstein Condensates

  • T. Michoel
  • A. Verbeure
Article
  • 24 Downloads

Abstract

We consider an exactly soluble model of two Bose–Einstein condensates with a Josephson-type of coupling. Its equilibrium states are explicitly found showing condensation and spontaneously broken gauge symmetry. It is proved that the total number and total phase fluctuation operators, as well as the relative number and relative current fluctuation operators form both a quantum canonical pair. The exact relation between the relative current and phase fluctuation operators is established. Also the dynamics of these operators is solved showing the collapse and revival phenomenon.

Bose–Einstein condensation fluctuations of a Josephson-type current phase fluctuations collapse and revivals interferences in equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemann, and E. A. Cornell, Science 269:198 (1995).Google Scholar
  2. 2.
    K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Physical Review Letters 75:2969 (1995).Google Scholar
  3. 3.
    C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett. 75:1687 (1995).Google Scholar
  4. 4.
    M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science 273:84 (1996).Google Scholar
  5. 5.
    P. Nozieres and D. Pines, The Theory of Quantum Liquids, Vol. 2 (Addison-Wesley, Massachusets, 1990).Google Scholar
  6. 6.
    W. Gardiner, Phys. Rev. A 56:1414 (1997).Google Scholar
  7. 7.
    M. Fannes, J. V. Pulè, and A. Verbeure, Helvetica Physica Acta 55:391-399 (1982).Google Scholar
  8. 8.
    D. Goderis and P. Vets, Communications in Mathematical Physics 122:249 (1989).Google Scholar
  9. 9.
    D. Goderis, A. Verbeure, and P. Vets, Communications in Mathematical Physics 128:533-549 (1990).Google Scholar
  10. 10.
    T. Michoel and A. Verbeure, J. Stat. Phys. 96(5/6):1125-1162 (1999).Google Scholar
  11. 11.
    E. M. Wright, T. Wong, M. J. Collet, S. M. Tan, and D. F. Walls, Phys. Rev. A 56:591 (1997).Google Scholar
  12. 12.
    X. G. Wang, S. H. Pan, and G. Z. Yang, Physica A 274:484 (1999).Google Scholar
  13. 13.
    P. Villain and M. Lewenstein, Phys. Rev. A 59:2250 (1998).Google Scholar
  14. 14.
    T. Michoel and A. Verbeure, Preprint-KUL-TF-2000/02 (arXiv:math-ph/0001033) (2000).Google Scholar
  15. 15.
    D. Goderis, A. Verbeure, and P. Vets, Probability Theory and Related Fields 82:527-544 (1989).Google Scholar
  16. 16.
    K. Huang, Statistical Mechanics (Wiley, London, 1967).Google Scholar
  17. 17.
    E. B. Davies, Communications in Mathematical Physics 28:69 (1972).Google Scholar
  18. 18.
    M. Fannes and A. Verbeure, J. Math. Phys. 21(7):1809-1818 (1980).Google Scholar
  19. 19.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 (Springer, Berlin/Heidelberg/New York, 1996).Google Scholar
  20. 20.
    M. Fannes and A. Verbeure, Communications in Mathematical Physics 55:125-131 (1977).Google Scholar
  21. 21.
    M. Fannes and A. Verbeure, Communications in Mathematical Physics 57:165-171 (1977).Google Scholar
  22. 22.
    A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 69:329 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • T. Michoel
    • 1
  • A. Verbeure
    • 1
  1. 1.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations