Journal of Materials Science

, Volume 35, Issue 12, pp 3089–3096

Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg)

  • N. Lahl
  • K. Singh
  • L. Singheiser
  • K. Hilpert
  • D. Bahadur
Article

Abstract

The crystallisation kinetics of AO-Al2O3-SiO2-B2O3glasses (A = Ba, Ca, Mg) was investigated using DTA, XRD, and microstructural studies. Moreover, the influence of nucleating agentssuch as TiO2, ZrO2, Cr2O3, and Ni on MgO base glasses waselucidated. The glasses are of interest for the development ofsealants in Solid Oxide Fuel Cells (SOFC). The activation energy ofcrystal growth, Ea, was evaluated for the different glassesusing the modified Kissinger equation. The preparation method of theglasses seems to determine whether surface or bulk nucleation is thedominant mechanism. The Ea values vary between 330 and622 kJ/mol. The nucleating agents tend to enhance Ea exceptZrO2. An increase of the Al2O3 concentration induces phaseseparation and decreases Ea. The results are discussed onthe basis of the structural role and chemical properties of the Alions as well as with respect to the possible use of the glasses inSOFC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. L. Ley, M. Krumpelt, R. Kumar, J. H. Meissser and I. Bloom, J. Mater. Res. 11 (1996) 1489.Google Scholar
  2. 2.
    S. V. Phillips, A. K. Dutta and L. Lakin, in Proceedings of the 2nd International Symposium on Solid Oxide Fuel Cells, Athens, July 1991, edited by F. Grosz et al. (Commission of the European Communities, Brussels, 1991) p. 737.Google Scholar
  3. 3.
    Y. M. Sung, J. Mater. Sci. 31 (1996) 5421.Google Scholar
  4. 4.
    Z. Strnad, “Glass Ceramics Materials” (Glass Science & Technology, V8, Elsevier, Amsterdam, 1986).Google Scholar
  5. 5.
    L. Barbieri, A. B. Corradi, C. Leonelli, C. Siligardi, T. Manfredini and G. C. Pellani, Mater. Res. Bull. 32 (1997) 637.Google Scholar
  6. 6.
    I. W. Donald, B. L. Metcalfe and A. E. P. Morris, J. Mater. Sci. 27 (1992) 2979.Google Scholar
  7. 7.
    J. F. Mac dowell and G. H. Beall, J. Amer. Ceram. Soc. 52 (1969) 17.Google Scholar
  8. 8.
    R. F. Davis and J. A. Pask, ibid. 55 (1972) 525.Google Scholar
  9. 9.
    C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi and G. C. Pellacani, ibid. 26 (1991) 5041.Google Scholar
  10. 10.
    S. H. Knickerbocker, A. H. Kumar and L. W. Herron, Amer. Ceram. Soc. Bull. 72 (1993) 90.Google Scholar
  11. 11.
    M. J. Hyatt and N. P. Bansal, J. Mater. Sci. 31 (1996) 172.Google Scholar
  12. 12.
    A. Dietzel, Glastechn. Berichte 22 Heft 3/4 (1948) 41.Google Scholar
  13. 13.
    W. Zdaniewski, J. Amer. Ceram. Soc. 58 (1975) 163.Google Scholar
  14. 14.
    Idem., J. Mater. Sci. 8 (1973) 192.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • N. Lahl
    • 1
  • K. Singh
    • 1
  • L. Singheiser
    • 1
  • K. Hilpert
    • 2
  • D. Bahadur
    • 3
  1. 1.Institute for Materials and Processing in Energy Systems, Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Institute for Materials and Processing in Energy Systems, Forschungszentrum Jülich GmbHJülichGermany
  3. 3.Department of Metallurgical Engineering and Materials ScienceIndian Institute of TechnologyBombay, Mumbai-India

Personalised recommendations