Journal of Materials Science

, Volume 36, Issue 1, pp 147–151 | Cite as

Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells

  • R. Vaßen
  • D. Simwonis
  • D. Stöver

Abstract

The degradation of anodes of solid oxide fuel cells (SOFC), which consist of a porous metal − solid electrolyte material is described by a two particle model. The model is based on two main assumptions. Firstly, the difference in metal particle diameter is the driving force for the observed coarsening of the larger metal particle during long term annealing. Secondly, surface diffusion of metal atoms on the particle surface is the dominant diffusion mechanism. Additionally, a function was introduced which considers the limited space for the growth of the nickel particles in the cermet material. The found analytical function for the growth kinetics was compared to experimental results for the growth of nickel particles in a nickel - yttria stabilised zirconia (YSZ) anode annealed at 1000°C up to 4000 h. The model describes the time dependence of the observed particle radii in an adequate way. The resultant surface diffusion coefficients for Ni are lower than results found in literature. Possible explanations are discussed. However, the result shows that the proposed mechanism – surface diffusion of nickel atoms - is fast enough to explain the found amount of Ni agglomeration in SOFC anodes and is therefore considered to be the dominant mechanism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Q. Minh, J. Amer. Ceram. Soc. 76(5) (1993) 563.Google Scholar
  2. 2.
    H. P. Buchkremer, U. Diekmann, L. G. J. De Haart, H. Kabs, U. Stimming and D. StÖver, in Electrochemical Proceedings 97–18, edited by U. Stimming, S. C. Singhal, H. Tagawa and W. Lehnert (The Electrochemical Society, Pennington, New Jersey, 1997) p. 160.Google Scholar
  3. 3.
    A. MÜller, A. Weber, A. KrÜgel, D. Gerthsen and E. Ivers-TiffÉ, in Proc. of the Werkstoffwoche 98, edited by A. Kranzmann and U. Gramberg (Wiley-VCH Verlag GmbH, Weinheim, 1999) Vol. 3, p. 171.Google Scholar
  4. 4.
    A. Naoumidis, A. Gupta, H. Hoven, TH. Kloidt, D. Simwonis and F. Tietz, in Proceedings of the 10th IEAWorkshop on SOFCs, Materials and Processes, edited by A. J. McEvoy and K. Nisancioglu (Inter. Energy Agency, 1997) Vol. 1, p. 119.Google Scholar
  5. 5.
    J. Abel, A. A. Kornyshev and W. Lehnert, 144(12) (1997) 4253.Google Scholar
  6. 6.
    A. Ioselevich, A. A. Kornyshev and W. Lehnert, J. Electrochem. Soc. 144(9) (1997) 3010.Google Scholar
  7. 7.
    J. Pan, H. Le, S. Kucherenko and J. A. Yeomans, Acta Mater. 46(13) (1998) 4671.Google Scholar
  8. 8.
    G. C. Kuczynski, J. Appl. Phys. 21 (1950) 632.Google Scholar
  9. 9.
    P. W. Voorhees, Journal of Statistical Physics 38(1/2) (1985) 231.Google Scholar
  10. 10.
    W. D. Kingery and B. Francois, in “Sintering and Related Phenomena, ” edited by G. C. Kuczynski et al. (Gordon and Breach, New York, 1967) p. 471.Google Scholar
  11. 11.
    H. P. Buchkremer, U. Diekmann and D. StÖver, Proc. 2nd Europ. SOFC Forum 1996, edited by B. Thostensen, (U. Bossel, Morgenacherstrasse 2F, CH-5452, Oberrohrdorf, Switzerland, 1996) p. 221.Google Scholar
  12. 12.
    M. I. Mendelson, J. Amer. Ceram. Soc. 52(8) (1969) 443.Google Scholar
  13. 13.
    D. Simwonis, PhD thesis, Ruhr-University Bochum, 1999.Google Scholar
  14. 14.
    J. M. Blakely and H. Mykura, Acta Metall. 9 (1961) 23.Google Scholar
  15. 15.
    Landolt-BÖrnstein, in “Diffusion in Solid Metals and Alloys, ” Volume 26, edited by H. Mehrer (Springer-Verlag, Berlin Heidelberg, 1990). Ch. 13: Surface Diffusion in Metals by H. P. Bonzel.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • R. Vaßen
    • 1
  • D. Simwonis
    • 1
  • D. Stöver
    • 1
  1. 1.Institut für Werkstoffe und Verfahren der EnergietechnikJülichGermany

Personalised recommendations