Advertisement

Journal of Low Temperature Physics

, Volume 122, Issue 3–4, pp 313–322 | Cite as

Solid Ar, N2, CO, and O2 in Nanopores

  • D. Wallacher
  • P. Huber
  • K. Knorr
Article

Abstract

Molecular solids enclosed in pores with diameters in the nm-range are a research field which attracts growing interest. The major questions asked in this context are: what is the structure and the dynamics? How are phase and glass transitions modified by the geometrical constraint? In this contribution we present structural information, by x-ray diffraction measurements, as well as thermodynamic characterization, by vapor pressure and heat capacity measurements, on Ar, which is usually considered the simplest of all condensates, and on the small diatomic molecules N2, C0, O2 in porous glasses with average pore diameters from 50 to 130Å.

Keywords

Heat Capacity Glass Transition Vapor Pressure Magnetic Material Structural Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Molz, A.P.Y. Wong, M.H.W. Chan, and J.R. Beamish, Phys. Rev. B 48, 5741 (1993).Google Scholar
  2. 2.
    C.L. Jackson, and G.B. McKenna, J. Chem. Phys. 93, 9002 (1990).Google Scholar
  3. 3.
    A.A. Antoniou, J. Phys. Chem. 68, 2752 (1964).Google Scholar
  4. 4.
    K.M. Unruh, T.E. Huber, and C.A. Huber, Phys. Rev. B 48, 9021 (1993).Google Scholar
  5. 5.
    R.H. Tori, H.J. Maris, and G.H. Seidel, Phys. Rev. B 41, 7161 (1990).Google Scholar
  6. 6.
    R.H. Tait, and J.D. Reppy, Phys. Rev. B 20, 997 (1979).Google Scholar
  7. 7.
    F. Biquard, R. Cole, and C. Jacolin, J. Chem. Phys. 93, 6779 (1990).Google Scholar
  8. 8.
    Y. Wang, W.M. Snow, and P.E. Sokol, J. Low Temp. Phys. 101, 929 (1995).Google Scholar
  9. 9.
    B.S. Schirato, M.P. Fang, P.E. Sokol, and S. Komarneni, Science 267, 369 (1995).Google Scholar
  10. 10.
    P.E. Sokol, R.T. Azuah, M.R. Gibbs, and S.M. Bennington, J. Low Temp. Phys. 103, 23 (1996).Google Scholar
  11. 11.
    W.F. Saam, and M.W. Cole, Phys. Rev. B 11, 1086 (1975).Google Scholar
  12. 12.
    M. Brun, A. Lallemand, J.F. Quinson, and C. Eyraud, Thermochim. Acta 21, 59 (1977).Google Scholar
  13. 13.
    D. Wallacher, and K. Knorr, J. de Physique (France) IV 10, Pr7-151 (2000).Google Scholar
  14. 14.
    P. Huber, D. Wallacher, and K. Knorr, J. Low Temp. Phys. 111, 419 (1998).Google Scholar
  15. 15.
    P. Huber, and K. Knorr, Phys. Rev. B 60, 12657 (2000).Google Scholar
  16. 16.
    P. Huber, D. Wallacher, and K. Knorr, Phys. Rev. B 60, 12666 (2000).Google Scholar
  17. 17.
    T.A. Scott, Phys. Reports 3, 85 (1976).Google Scholar
  18. 18.
    G.C. DeFotis, Phys. Rev. B 23, 4714 (1981).Google Scholar
  19. 19.
    R. Ackermann, T. Knoblauch, D. Kumar, K. Unger, and M. Enderle, contribution to this conference.Google Scholar
  20. 20.
    R. Lipowsky, Ferroelectrics 73, 69 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. Wallacher
    • 1
  • P. Huber
    • 2
  • K. Knorr
    • 1
  1. 1.Technische PhysikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Physics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations