Skip to main content
Log in

Ultimate properties of rubber and core-shell modified epoxy matrices with different chain flexibilities

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Preformed polystyrene-co-butylacrylate (PScoBu) core-shell particles and polystyrene microspheres as well as amine-terminated butadiene nitrile (ATBN) rubber have been used for modification of both rigid and more flexible crosslinked DGEBA-based epoxy networks having significantly different crosslink densities. Some variations in cure kinetics have been shown by both thermal and rheological measurements. Independently of the crosslink density of the neat epoxy matrix, function of the cycloaliphatic or aliphatic hardener used, the toughening effect via core-shell modification has been found as good as that for rubber modification but with a better retention of thermal properties. Results are investigated as a function of the morphologies obtained by scanning electron microscopy (SEM) but also by atomic force microscopy (AFM). Larger fracture toughness was obtained for every-unmodified and modified- epoxy matrices cured with the aliphatic hardener as a consequence of the lower crosslink density of the corresponding mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 49 (1980) 442.

    Google Scholar 

  2. J. M. Scott, G. M. Wells and D. C. J. Phillips, ibid. 15 (1980) 1436.

    Google Scholar 

  3. A. J. Kinloch, S. J. Shaw, D. A. Tod and D. L. Hunston, Polymer 24 (1983) 1355.

    Google Scholar 

  4. A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.

    Google Scholar 

  5. Y. Huang and A. J. Kinloch, ibid. 27 (1992) 2753.

    Google Scholar 

  6. H.-J. Sue, Polym. Eng. Sci. 31 (1991) 275.

    Google Scholar 

  7. G. Levita, A. Marchetti and A. Lazzeri, Makromol. Chem., Macromol. Symp. 41 (1991) 179.

    Google Scholar 

  8. B. J. Cardwell and A. F. Yee, Polymer 34 (1993) 1695.

    Google Scholar 

  9. M. C. M. Van Der Sanden and H. E. H. Meijer, ibid. 34 (1993) 5063.

    Google Scholar 

  10. H.-J. Sue, E. I. Garcia Meitin and N. A. Orchard, J. Polym. Sci.: Part B: Polym. Phys. 31 (1993) 595.

    Google Scholar 

  11. B. Geisler and F. N. Kelley, J. Appl. Polym. Sci. 54 (1994) 177.

    Google Scholar 

  12. H.-J. Sue, J. L. Bertram, E. I. Garcia Meitin and P. M. Puckett, J. Polym. Sci.: Part B: Polym. Phys. 33 (1995) 2003.

    Google Scholar 

  13. F. Lu, H. H. Kausch, W. J. Cantwell and M. Fischer, J. Mater. Sci. Lett. 15 (1996) 1018.

    Google Scholar 

  14. H.-J. Sue, E. I. Garcia Meitin, D. M. Pickelman and C. J. Bott, Colloid Polym. Sci. 274 (1996) 342.

    Google Scholar 

  15. J. Y. Qian, R. A. Pearson, V. L. Dimonie, O. L. Shaffer and M. S. El-Aasser, Polymer 38 (1997) 21.

    Google Scholar 

  16. J. D. Lemay and F. N. Kelley, Adv. Polym. Sci. 78 (1986) 115.

    Google Scholar 

  17. R. A. Pearson and A. F. Yee, J. Mater. Sci. 24 (1989) 2571.

    Google Scholar 

  18. I. Mondragon, P. M. Remiro, M. D. Martin, A. Valea, M. Franco and V. Bellenguer, Polym. Intern. 47 (1998) 152.

    Google Scholar 

  19. European Structural Integrity Society, “Testing Protocol for Polymers” (ESIS, 1992).

  20. J. G. Williams and M. J. Cawood, Polym. Testing 9 (1990) 15.

    Google Scholar 

  21. J. W. Kim, J. Y. Kim and K. D. Suh, J. Macromol. Sci.-Pure Appl. Chem. A35 (1998) 249.

    Google Scholar 

  22. J. He, D. Raghavan, D. Hoffman and D. Hunston, Polymer 40 (1999) 1923.

    Google Scholar 

  23. E. Butta, G. Levita, A. Marchetti and A. Lazzeri, Polym. Eng. Sci. 26 (1986) 63.

    Google Scholar 

  24. R. A. Pearson and A. F. Yee, J. Mater. Sci. 21 (1986) 2475.

    Google Scholar 

  25. C. G. Delides, D. Hayward, R. A. Pethrick and A. S. Vatalis, J. Appl. Polym. Sci. 47 (1993) 2037.

    Google Scholar 

  26. A. J. Kinloch and D. L. Hunston, J. Mater. Sci. Lett. 6 (1987) 131.

    Google Scholar 

  27. S. Hotiuchi, A. C. Street, T. Ougizawa and T. Kitano, Polymer 35 (1994) 5283.

    Google Scholar 

  28. D. Verchere, J. P. Pascault, H. Sautereau, S. M. Moschiar, C. C. Riccardi and R. J. J. Williams, J. Appl. Polym. Sci. 43 (1991) 293.

    Google Scholar 

  29. I. Mondragon, I. Quintard and C. B. Bucknall, Plast. Rubb. Comp. Proc. Applic. 23 (1995) 331.

    Google Scholar 

  30. F. Fdez Nograro, A. Valea, R. Llano-Ponte and I. Mondragon, Eur. Polym. J. 32 (1996) 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mondragon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ormaetxea, M., Forcada, J., Mugika, F. et al. Ultimate properties of rubber and core-shell modified epoxy matrices with different chain flexibilities. Journal of Materials Science 36, 845–852 (2001). https://doi.org/10.1023/A:1004826529065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004826529065

Keywords

Navigation