Journal of Low Temperature Physics

, Volume 122, Issue 1–2, pp 1–10 | Cite as

Acoustics of a “Dirty” Fermi Liquid: 3He in Aerogel

  • G. Gervais
  • R. Nomura
  • T. M. Haard
  • Y. Lee
  • N. Mulders
  • W. P. Halperin

Abstract

An acoustic cavity containing 3He in 98% porous silica aerogel was used to investigate the effects of impurity scattering in a Fermi liquid. The pressure and temperature dependence of the sound attenuation in the normal Fermi liquid was extracted from the cavity response. The attenuation of sound displays behavior very different from the bulk owing to strong elastic scattering of quasi-particles by the silica strands. Using a visco-elastic model of the Fermi liquid, we find a mean free path restricted to ∼340 nm. Information on the sound velocity is inferred from the pressure dependence of the oscillation period of the cavity response. The data can be accounted for by a Biot model of the 3He liquid in the porous aerogel.

REFERENCES

  1. 1.
    D. D. Osheroff et al., Phys. Rev. Lett. 28, 885 (1972).Google Scholar
  2. 2.
    J. V. Porto and J. M. Parpia, Phys. Rev. Lett. 74, 4667 (1995).Google Scholar
  3. 3.
    D. T. Sprague et al., Phys. Rev. Lett. 75, 661 (1995).Google Scholar
  4. 4.
    D. T. Sprague et al., Phys. Rev. Lett. 77, 4568 (1996).Google Scholar
  5. 5.
    B. I. Barker et al., J. Low Temp. Phys. 113, 635 (1998).Google Scholar
  6. 6.
    H. Alles et al., Phys. Rev. Lett. 83, 1367 (1999).Google Scholar
  7. 7.
    K. Matsumoto et al., Phys. Rev. Lett. 79, 253 (1997).Google Scholar
  8. 8.
    J. V. Porto and J. M. Parpia, Phys. Rev. B 59, 14583 (1999).Google Scholar
  9. 9.
    A. Golov et al., Phys. Rev. Lett. 82, 3492 (1999).Google Scholar
  10. 10.
    G. E. Volovik, Pis'ma Zh. Eksp. Teor. Fiz. 63, 281 (1996) [JETP Lett. 63, 301 (1996)].Google Scholar
  11. 11.
    E. V. Thuneberg et al., Phys. Rev. Lett. 80, 2861 (1998).Google Scholar
  12. 12.
    G. Baramidze and G. Kharadze, Zh. Eksp. Teor. Fiz. 115, 754 (1999) [JETP Lett. 88, 415 (1999)].Google Scholar
  13. 13.
    S. Higashitani, J. Low Temp. Phys. 114, 161 (1999).Google Scholar
  14. 14.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 17, 74 (1966).Google Scholar
  15. 15.
    T. M. Haard et al., Physica B 284-288, 289 (2000).Google Scholar
  16. 16.
    R. Nomura et al., Phys. Rev. Lett. 85, 4325 (2000).Google Scholar
  17. 17.
    Y. Lee et al., Nature 400, 431, (2000).Google Scholar
  18. 18.
    Y. Lee et al., J. Low Temp. Phys. 103, 635 (1996).Google Scholar
  19. 19.
    I. Rudnick, J. Low Temp. Phys. 40, 287 (1980).Google Scholar
  20. 20.
    W. P. Halperin and E. Varoquaux, Helium Three, W. P. Halperin and L. P. Pitaevski (eds.), Elsevier, Amsterdam (1990), p. 255.Google Scholar
  21. 21.
    J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).Google Scholar
  22. 22.
    D. Rainer and J. A. Sauls, J. Low Temp. Phys. 110, 525 (1998).Google Scholar
  23. 23.
    D. Einzel and J. M. Parpia, Phys. Rev. Lett. 81, 3896 (1998) and D. Einzel, private communication.Google Scholar
  24. 24.
    M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956); 28, 179 (1956). See also D. L. Johnson, “Recent Developments in the Acoustic Properties of Porous Media,”' Frontiers of Physical Acoustics, Proc. International School of Physics “Enrico Fermi,” Elsevier (1986). 10 G. Gervais et al.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • G. Gervais
    • 1
  • R. Nomura
    • 1
  • T. M. Haard
    • 1
  • Y. Lee
    • 1
  • N. Mulders
    • 1
    • 2
  • W. P. Halperin
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.Department of Physics and AstronomyUniversity of DelawareDelawareUSA

Personalised recommendations