Advertisement

Journal of Materials Science

, Volume 35, Issue 19, pp 4879–4883 | Cite as

Structural characterization of bulk ZnWO4 prepared by solid state method

  • A. R. Phani
  • M. Passacantando
  • L. Lozzi
  • S. Santucci
Article

Abstract

Uniform crystals of ZnWO4 have been synthesised from the equimolar mixtures of ZnO and WO3 by conventional solid state method. For the first time the sample has been characterised detailedly to confirm the formation of pure single phase of perovskite ZnWO4. The formation of ZnWO4 has been confirmed by sintering the mixtures of ZnO and WO3 at two different temperatures one at 900 °C and other at 1000 °C. It is observed that the sample sintered at 1000 °C for 24 h shows complete formation of the single phase of ZnWO4. The crystallinity and the phase formation has been confirmed by X-ray diffraction technique. X-ray photoelectron spectroscopy measurements have been carried out for the bulk ZnWO4 sintered at 1000 °C for 24 h, showing 16% of Zn, 16% of W and 68% of O indicating stoichiometric ZnWO4. Surface morphology studies by scanning electron microscopy showed uniform crystals of ZnWO4. The purity of the compound has also been checked in depth by Energy Dispersive X-ray method indicating the absence of foreign ions apart from that, the ratio of Zn : W has been calculated and found to be 1 : 1 confirming the stoichiometric ZnWO4 inside the crystals.

Keywords

Perovskite Single Phase Phase Formation Energy Dispersive Structural Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Furuya and A. Ochi, Jpn. J. Appl. Phys. 33 (1994) 5482.Google Scholar
  2. 2.
    T. S. Rao, V. R. K. Murthy and B. Viswanathan, Ferroelectrics 102 (1990) 155.Google Scholar
  3. 3.
    K. Wakino, ibid. 91 (1989) 69.Google Scholar
  4. 4.
    B. C. H. Steele, “Electronic Ceramics” (Elsevier Applied Science, London and New York, 1991).Google Scholar
  5. 5.
    V. L. Gurevich and A. K. Tagantsev, Sov. Phys. JETP 64 (1986) 142.Google Scholar
  6. 6.
    D. A. Sagala and S. Nambu,J. Am. Ceram. Soc. 75 (1992) 2573.Google Scholar
  7. 7.
    B. D. Silverman, Phys. Rev. 125 (1962) 1921.Google Scholar
  8. 8.
    K. Matsumoto, T. Hiuga, K. Takada and H. Ichimura, in Proc. 6th IEEE Int. Symp. Appl. Ferroelectrics (1986) p. 118.Google Scholar
  9. 9.
    M. P. Harmer, J. Chen, P. Peng, H. M. Chan and D. M. Smyth, Ferroelectrics 97 (1989) 263.Google Scholar
  10. 10.
    C. H. Lu and C. C. Tsai, J. Mater. Res. 11 (1996) 1219.Google Scholar
  11. 11.
    X. M. Chen, Y. Suzuki and N. Sato, J. Mater. Sci. 5 (1994) 244.Google Scholar
  12. 12.
    S. Nomura, Ferroelectrics 49 (1983) 61.Google Scholar
  13. 13.
    K. H. Yoon, D. P. Kim and E. S. Kim,J. Am. Ceram. Soc. 77 (1994) 1062.Google Scholar
  14. 14.
    F. Izumi, in “The Rietveld Method,” edited by R. A. Young (Oxford University Press, New York, 1993) p. 236.Google Scholar
  15. 15.
    F. P. J. M. Kerkhof and J. A. Moulijn, J. Electron Spectroscopy and Related Phenomena 14 (1978) 453.Google Scholar
  16. 16.
    D. A. Sagala and S. Nambu, J. Phys. Soc. Jpn. 61 (1992) 1791.Google Scholar
  17. 17.
    K.-M. Lee, H. M. Jang and W.-J. Park, J. Mater. Res. 12 (1997) 1603.Google Scholar
  18. 18.
    K.-M. Lee and H. M. Jang, J. Am. Ceram. Soc. 81 (1998) 2586.Google Scholar
  19. 19.
    D. Briggs and M. P. Seah, “Auger and X-ray Photoelectron Spectroscopy” (John Wiley and Sons, 1990).Google Scholar
  20. 20.
    R. J. Colton and J. W. Rabais, Inorg. Chem. 15 (1976) 236.Google Scholar
  21. 21.
    F. Izumi, M. Mitomo and Y. Bando, J. Mater. Sci. 19 (1984) 3115.Google Scholar
  22. 22.
    R. A. Young and D. B. Wiles, J. Appl. Cryst. 15 (1982) 435.Google Scholar
  23. 23.
    R. D. Shannon and C. T. Prewitt, Acta Cryst. B25 (1969) 925.Google Scholar
  24. 24.
    W. Piece and A. Weiss, in “Landolt-Börnstein-Numerical Data and Functional Relationships in Science and Technology, New Series,” edited by K. H. Helwege and A. M. Helwege (Springer-Verlag,1973), Group III: Crystal and Solid State Physics. 7 [e].Google Scholar
  25. 25.
    G. V. Samsonov, “The Oxide Handbook” (IFI/PLENUM, 1982).Google Scholar
  26. 26.
    N.-H. Chan, R. K. Sharma and D. M. Smyth, J. Am. Ceram. Soc. 65 (1982) 167.Google Scholar
  27. 27.
    I. M. Reaney, J. Petzelt, V. V. Voitsekhovskii, F. Chu and N. Setter, J. Appl. Phys. 76 (1994) 2086.Google Scholar
  28. 28.
    C. A. Randall, D. J. Barber, R. W. Whatmore and P. Groves, J. Mater. Sci. 21 (1986) 4456.Google Scholar
  29. 29.
    G. Koschek and E. Kubalek,J. Am. Ceram. Soc. 68 (1985) 582.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. R. Phani
    • 1
  • M. Passacantando
    • 1
  • L. Lozzi
    • 1
  • S. Santucci
    • 2
  1. 1.Department of Physics and Unità INFM –University of L'AquilaL'AquilaItaly
  2. 2.Department of Physics and Unità INFM –University of L'AquilaL'AquilaItaly

Personalised recommendations