Periodica Mathematica Hungarica

, Volume 39, Issue 1–3, pp 161–183 | Cite as


  • Wolfgang Kühnel
  • Frank H. Lutz


A triangulation of a manifold (or pseudomanifold) is called a tight triangulation if any simplexwise linear embedding into any Euclidean space is tight. Tightness of an embedding means that the inclusion of any sublevel selected by a linear functional is injective in homology and, therefore, topologically essential. Tightness is a generalization of convexity, and the tightness of a triangulation is a fairly restrictive property. We give a review on all known examples of tight triangulations and formulate a (computer-aided) enumeration theorem for the case of at most 15 vertices and the presence of a vertex-transitive automorphism group. Altogether, six new examples of tight triangulations are presented, a vertex-transitive triangulation of the simply connected homogeneous 5-manifold SU(3)/SO(3) with vertex-transitive action, two non-symmetric 12-vertex triangulations of S3 × S2, and two non-symmetric triangulations of S3 × S3 on 13 vertices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    A. Altshuler, Construction and representation of neighborly manifolds, J. Comb. Theory, Ser. A 77 (1997), 246–267.MATHMathSciNetCrossRefGoogle Scholar
  2. [ABS]
    A. Altshuler, J. Bokowski, P. Schuchert, Neighborly 2–manifolds with 12 vertices, J. Comb. Theory, Ser. A 75 (1996), 148–162.MATHMathSciNetCrossRefGoogle Scholar
  3. [ABr]
    A. Altshuler, U. Brehm, Neighborly maps with few vertices, Discrete Comput. Geom. 8 (1992), 93–104.MATHMathSciNetCrossRefGoogle Scholar
  4. [AS]
    A. Altshuler, L. Steinberg, An enumeration of combinatorial 3–manifolds with nine vertices, Discrete Math. 16 (1976), 91–108.MATHMathSciNetCrossRefGoogle Scholar
  5. [Ba1]
    T. F. Banchoff, Tightly embedded 2–dimensional polyhedral manifolds, Am. J. Math. 87 (1965), 462–472.MATHMathSciNetCrossRefGoogle Scholar
  6. [Ba2]
    T. F. Banchoff, Tight polyhedral Klein bottles, projective planes, and Möbius bands, Math. Ann. 207 (1974), 233–243.MATHMathSciNetCrossRefGoogle Scholar
  7. [BaK]
    T. F. Banchoff, W. KÜhnel, Tight submanifolds, smooth and polyhedral, Tight and taut submanifolds (T. E. Cecil, S.-s. Chern, eds.), 51–118, MSRI Publications 32, Cambridge University Press, Cambridge, 1997.Google Scholar
  8. [Bar]
    D. Barden, Simply connected five-manifolds, Ann. Math. 82 (1965), 365–385.MATHMathSciNetCrossRefGoogle Scholar
  9. [BjLu]
    A. BjÖrner, F. H. Lutz, Simplicial manifolds, bistellar flips and a 16–vertex triangulation of the Poincaré homology 3–sphere, Exper. Math., to appear.Google Scholar
  10. [BK1]
    U. Brehm, W. KÜhnel, Combinatorial manifolds with few vertices, Topology 26 (1987), 465–473.MATHMathSciNetCrossRefGoogle Scholar
  11. [BK2]
    U. Brehm, W. KÜhnel, 15–vertex triangulations of an 8–manifold, Math. Ann. 294 (1992), 167–193.MATHMathSciNetCrossRefGoogle Scholar
  12. [CK]
    M. Casella, W. KÜhnel, A triangulated K3 surface with the minimum number of vertices, Topology, to appear.Google Scholar
  13. [Em]
    A. Emch, Triple and multiple systems, their geometric configurations and groups, Trans. Am. Math. Soc. 31 (1929), 25–42.MATHMathSciNetCrossRefGoogle Scholar
  14. [G]
    V. V. Gorbatsevich. On compact homogeneous manifolds of low dimension, Geom. Metody Zadachakh Algebry Anal. 2 (1980), 37–60.MATHMathSciNetGoogle Scholar
  15. [He]
    F. Heckenbach, Die Möbiusfunktion und Homologien auf partiell geordneten Mengen, Thesis for Diploma at University Erlangen-Nuremberg, 1997, Computer program HOMOLOGY; Google Scholar
  16. [Kl]
    S. Klaus, Einfach-zusammenhängende Kompakte Homogene Räume bis zur Dimension Neun, Diplomarbeit, Johannes Gutenberg-Universität Mainz, 1988.Google Scholar
  17. [Kö]
    E. KÖhler, Quadrupel systems over ℤp admitting the affine group, Combinatorial Theory (D. Jungnickel, K. Vedder, eds.), 212–228, Lecture Notes in Mathematics 969, Berlin: Springer-Verlag, 1982.Google Scholar
  18. [KLu]
    E.G. KÖhler, F.H. Lutz, Combinatorial manifolds with transitive automorphism group on few vertices, Preprint 1999.Google Scholar
  19. [K]
    W. KÜhnel, Tight Polyhedral Submanifolds and Tight Triangulations, Lecture Notes in Mathematics 1612, Berlin: Springer, 1995.MATHGoogle Scholar
  20. [KBa]
    W. KÜhnel, T. F. Banchoff, The 9–vertex complex projective plane, Math. Intell. 5,No. 3 (1983), 11–22.MATHCrossRefGoogle Scholar
  21. [KL1]
    W. KÜhnel, G. Lassmann, The unique 3–neighborly 4–manifold with few vertices, J. Comb. Theory, Ser. A 35 (1983), 173–184.MATHCrossRefGoogle Scholar
  22. [KL2]
    W. KÜhnel, G. Lassmann, Permuted difference cycles and triangulated sphere bundles, Discrete Math. 162 (1996), 215–227.MATHMathSciNetCrossRefGoogle Scholar
  23. [Kui]
    N. H. Kuiper, Geometry in total absolute curvature theory, Perspectives in Mathematics, Anniversary of Oberwolfach 1984 (W. JÄger, J. Moser, R. Remmert, eds.), 377–392, Birkhäuser, Basel, 1984.Google Scholar
  24. [Lu1]
    F. H. Lutz, Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions. Dissertation, Shaker Verlag, Aachen, 1999.MATHGoogle Scholar
  25. [Lu2]
    F. H. Lutz, Combinatorial pseudomanifolds with transitive automorphism group on few vertices, Preprint 1999.Google Scholar
  26. [Lu3]
    F. H. Lutz, GAP-program BISTELLAR. Second version 02/99 (First version 11/97 by A. BJÖRNER, F. H. LUTZ.); Google Scholar
  27. [R]
    G. Ringel, Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 209, Springer-Verlag, Berlin, 1974.MATHGoogle Scholar
  28. [Sch]
    M. SCHøNERT et al., GAP-Groups, Algorithms, and Programming. Lehrstul D für Mathematik, Rheinisch - Westfalische Technische Hochschule Aachen, Germany, fifth Edition, 1995; Scholar
  29. [Sp1]
    E. Sparla, Geometrische und kombinatorische Eigenschaften triangulierter Mannigfaltigkeiten, Dissertation, Shaker Verlag, Aachen, 1997.MATHGoogle Scholar
  30. [Sp2]
    E. Sparla, An upper and a lower bound theorem for combinatorial 4–manifolds, Discrete Comput. Geom. 19 (1998), 575–593.MATHMathSciNetCrossRefGoogle Scholar
  31. [Th]
    G. Thorbergsson, Homogeneous spaces without taut embeddings, Duke Math. J. 57 (1988), 347–355.MATHMathSciNetCrossRefGoogle Scholar
  32. [Wa]
    D. W. Walkup, The lower bound conjecture for 3–and 4–manifolds, Acta Math. 125 (1970), 75–107.MATHMathSciNetCrossRefGoogle Scholar
  33. [W]
    C. T. C. Wall, Classification of (n − 1)-connected 2n-manifolds, Ann. Math. 75 (1962), 163–189.MATHMathSciNetCrossRefGoogle Scholar
  34. [Wan]
    Z. Wang, Classification of closed nonorientable 4–manifolds with infinite cyclic fundamental group, Math. Res. Lett. 2 (1995), 339–344.MATHMathSciNetGoogle Scholar
  35. [Žu]
    A. V. Žubr, Classification of simply-connected topological 6–manifolds, Topology and Geometry — Rohlin Seminar (O. Ya. Viro, ed.), 325–339, Lecture Notes in Mathematics 1346, Springer-Verlag, Berlin, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Wolfgang Kühnel
  • Frank H. Lutz

There are no affiliations available

Personalised recommendations