Periodica Mathematica Hungarica

, Volume 39, Issue 1–3, pp 161–183 | Cite as


  • Wolfgang Kühnel
  • Frank H. Lutz


A triangulation of a manifold (or pseudomanifold) is called a tight triangulation if any simplexwise linear embedding into any Euclidean space is tight. Tightness of an embedding means that the inclusion of any sublevel selected by a linear functional is injective in homology and, therefore, topologically essential. Tightness is a generalization of convexity, and the tightness of a triangulation is a fairly restrictive property. We give a review on all known examples of tight triangulations and formulate a (computer-aided) enumeration theorem for the case of at most 15 vertices and the presence of a vertex-transitive automorphism group. Altogether, six new examples of tight triangulations are presented, a vertex-transitive triangulation of the simply connected homogeneous 5-manifold SU(3)/SO(3) with vertex-transitive action, two non-symmetric 12-vertex triangulations of S 3 × S 2, and two non-symmetric triangulations of S 3 × S 3 on 13 vertices.


Euclidean Space Automorphism Group Restrictive Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    A. Altshuler, Construction and representation of neighborly manifolds, J. Comb. Theory, Ser. A 77 (1997), 246–267.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [ABS]
    A. Altshuler, J. Bokowski, P. Schuchert, Neighborly 2–manifolds with 12 vertices, J. Comb. Theory, Ser. A 75 (1996), 148–162.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [ABr]
    A. Altshuler, U. Brehm, Neighborly maps with few vertices, Discrete Comput. Geom. 8 (1992), 93–104.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [AS]
    A. Altshuler, L. Steinberg, An enumeration of combinatorial 3–manifolds with nine vertices, Discrete Math. 16 (1976), 91–108.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [Ba1]
    T. F. Banchoff, Tightly embedded 2–dimensional polyhedral manifolds, Am. J. Math. 87 (1965), 462–472.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [Ba2]
    T. F. Banchoff, Tight polyhedral Klein bottles, projective planes, and Möbius bands, Math. Ann. 207 (1974), 233–243.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [BaK]
    T. F. Banchoff, W. KÜhnel, Tight submanifolds, smooth and polyhedral, Tight and taut submanifolds (T. E. Cecil, S.-s. Chern, eds.), 51–118, MSRI Publications 32, Cambridge University Press, Cambridge, 1997.Google Scholar
  8. [Bar]
    D. Barden, Simply connected five-manifolds, Ann. Math. 82 (1965), 365–385.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [BjLu]
    A. BjÖrner, F. H. Lutz, Simplicial manifolds, bistellar flips and a 16–vertex triangulation of the Poincaré homology 3–sphere, Exper. Math., to appear.Google Scholar
  10. [BK1]
    U. Brehm, W. KÜhnel, Combinatorial manifolds with few vertices, Topology 26 (1987), 465–473.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [BK2]
    U. Brehm, W. KÜhnel, 15–vertex triangulations of an 8–manifold, Math. Ann. 294 (1992), 167–193.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [CK]
    M. Casella, W. KÜhnel, A triangulated K3 surface with the minimum number of vertices, Topology, to appear.Google Scholar
  13. [Em]
    A. Emch, Triple and multiple systems, their geometric configurations and groups, Trans. Am. Math. Soc. 31 (1929), 25–42.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [G]
    V. V. Gorbatsevich. On compact homogeneous manifolds of low dimension, Geom. Metody Zadachakh Algebry Anal. 2 (1980), 37–60.zbMATHMathSciNetGoogle Scholar
  15. [He]
    F. Heckenbach, Die Möbiusfunktion und Homologien auf partiell geordneten Mengen, Thesis for Diploma at University Erlangen-Nuremberg, 1997, Computer program HOMOLOGY; Google Scholar
  16. [Kl]
    S. Klaus, Einfach-zusammenhängende Kompakte Homogene Räume bis zur Dimension Neun, Diplomarbeit, Johannes Gutenberg-Universität Mainz, 1988.Google Scholar
  17. [Kö]
    E. KÖhler, Quadrupel systems over ℤp admitting the affine group, Combinatorial Theory (D. Jungnickel, K. Vedder, eds.), 212–228, Lecture Notes in Mathematics 969, Berlin: Springer-Verlag, 1982.Google Scholar
  18. [KLu]
    E.G. KÖhler, F.H. Lutz, Combinatorial manifolds with transitive automorphism group on few vertices, Preprint 1999.Google Scholar
  19. [K]
    W. KÜhnel, Tight Polyhedral Submanifolds and Tight Triangulations, Lecture Notes in Mathematics 1612, Berlin: Springer, 1995.zbMATHGoogle Scholar
  20. [KBa]
    W. KÜhnel, T. F. Banchoff, The 9–vertex complex projective plane, Math. Intell. 5,No. 3 (1983), 11–22.zbMATHCrossRefGoogle Scholar
  21. [KL1]
    W. KÜhnel, G. Lassmann, The unique 3–neighborly 4–manifold with few vertices, J. Comb. Theory, Ser. A 35 (1983), 173–184.zbMATHCrossRefGoogle Scholar
  22. [KL2]
    W. KÜhnel, G. Lassmann, Permuted difference cycles and triangulated sphere bundles, Discrete Math. 162 (1996), 215–227.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [Kui]
    N. H. Kuiper, Geometry in total absolute curvature theory, Perspectives in Mathematics, Anniversary of Oberwolfach 1984 (W. JÄger, J. Moser, R. Remmert, eds.), 377–392, Birkhäuser, Basel, 1984.Google Scholar
  24. [Lu1]
    F. H. Lutz, Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions. Dissertation, Shaker Verlag, Aachen, 1999.zbMATHGoogle Scholar
  25. [Lu2]
    F. H. Lutz, Combinatorial pseudomanifolds with transitive automorphism group on few vertices, Preprint 1999.Google Scholar
  26. [Lu3]
    F. H. Lutz, GAP-program BISTELLAR. Second version 02/99 (First version 11/97 by A. BJÖRNER, F. H. LUTZ.); Google Scholar
  27. [R]
    G. Ringel, Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 209, Springer-Verlag, Berlin, 1974.zbMATHGoogle Scholar
  28. [Sch]
    M. SCHøNERT et al., GAP-Groups, Algorithms, and Programming. Lehrstul D für Mathematik, Rheinisch - Westfalische Technische Hochschule Aachen, Germany, fifth Edition, 1995; Scholar
  29. [Sp1]
    E. Sparla, Geometrische und kombinatorische Eigenschaften triangulierter Mannigfaltigkeiten, Dissertation, Shaker Verlag, Aachen, 1997.zbMATHGoogle Scholar
  30. [Sp2]
    E. Sparla, An upper and a lower bound theorem for combinatorial 4–manifolds, Discrete Comput. Geom. 19 (1998), 575–593.zbMATHMathSciNetCrossRefGoogle Scholar
  31. [Th]
    G. Thorbergsson, Homogeneous spaces without taut embeddings, Duke Math. J. 57 (1988), 347–355.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [Wa]
    D. W. Walkup, The lower bound conjecture for 3–and 4–manifolds, Acta Math. 125 (1970), 75–107.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [W]
    C. T. C. Wall, Classification of (n − 1)-connected 2n-manifolds, Ann. Math. 75 (1962), 163–189.zbMATHMathSciNetCrossRefGoogle Scholar
  34. [Wan]
    Z. Wang, Classification of closed nonorientable 4–manifolds with infinite cyclic fundamental group, Math. Res. Lett. 2 (1995), 339–344.zbMATHMathSciNetGoogle Scholar
  35. [Žu]
    A. V. Žubr, Classification of simply-connected topological 6–manifolds, Topology and Geometry — Rohlin Seminar (O. Ya. Viro, ed.), 325–339, Lecture Notes in Mathematics 1346, Springer-Verlag, Berlin, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Wolfgang Kühnel
  • Frank H. Lutz

There are no affiliations available

Personalised recommendations