Journal of Materials Science

, Volume 35, Issue 10, pp 2547–2552 | Cite as

C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form

  • H. Montigaud
  • B. Tanguy
  • G. Demazeau
  • I. Alves
  • S. Courjault
Article

Abstract

In order to prepare C3N4 as macroscopic sample, two synthesis attempts of the graphitic variety were carried out. The first consists on the condensation of melamine and cyanuric chloride (P = 130 MPa, T = 250°C) with triethylamine acting as solvent in supercritical conditions. The second one consists on the pyrolysis of melamine (P = 2.5 GPa, T = 800°C) in presence of hydrazine. The two routes led to a graphite-like carbon nitride, nevertheless, the first product is poorly crystallized and contains a larger amount of hydrogen as NHx due to a partial condensation. Several analysis (XRD, SEM, TEM, FTIR, XPS, EELS) reveal that the brown black solid issued from the route 2 presents a bidimensional honey-type structure close to those expected for the theoretical g-C3N4. This synthesis represents a first step in the C3N4 synthesis and its study as macroscopic sample.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Cohen, Nature 338 (1989) 291.Google Scholar
  2. 2.
    D. M. Teter and R. J. Hemley, Science 271 (1996) 53.Google Scholar
  3. 3.
    R. C. Devries, Mater. Res. Innovat. 1 (1997) 161.Google Scholar
  4. 4.
    M. R. Wixon, J. Am. Ceram. Soc. 73 (1990) 1973.Google Scholar
  5. 5.
    T. Sekine, H. Kanda, Y. Bando, M. Yokoyama and K. Hojou, J. Mater. Sci. Lett. 9 (1990) 1376.Google Scholar
  6. 6.
    L. Vel, G. Demazeau and J. Etourneau, Mat. Sci. Eng. B 10 (1991) 149.Google Scholar
  7. 7.
    P. Kennedy, Econ. Geol. 45 (1950) 629.Google Scholar
  8. 8.
    G. Demazeau, V. Gonnet, V. L. Solozhenko, B. Tanguy and H. Montigaud, C. R. Acad. Sci. Paris 321 Serie IIb (1995) 419.Google Scholar
  9. 9.
    S. Fahy, S. G. Louie, M. L. Cohen, Phys. Rev. B 34 (1986) 1191.Google Scholar
  10. 10.
    V. L. Solozhenko, in Properties of Group II Nitrides, INSPEC, London, 1994, p. 59.Google Scholar
  11. 11.
    X. A. Zhao, C. W. Ong, Y. C. Tsang, Y. W. Wong, P. W. Chan and C. L. Choy, Appl. Phys. Lett. 66 (1995) 2652.Google Scholar
  12. 12.
    H. X. Han and B. J. Feldman, Solid State Comm. 65 (1988) 92.Google Scholar
  13. 13.
    D. Marton, K. J. Boyd, A. H. Al-Bayati, S. S. Todorov and J. W. Rabalais, Phys. Rev. Lett. 73 (1994) 118.Google Scholar
  14. 14.
    A. K. Sharma, D. Ayyub, M. S. Multani, K. P. Adhi, S. B. Ogale, M. Sunderaraman, D. D. Upadhyay and S. Banerjee, Appl. Phys. Lett. 69 (1996) 3489.Google Scholar
  15. 15.
    H. Boehland, W. Hanay, A. Meisel and R. Sheibe, Z. Chem. 10 (1981) 372.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • H. Montigaud
    • 1
  • B. Tanguy
    • 1
  • G. Demazeau
    • 2
  • I. Alves
    • 1
  • S. Courjault
    • 3
  1. 1.Institut de Chimie de la Matière Condensée de Bordeaux ICMCB-CNRS (UPR 9048)Pessac CedexFrance
  2. 2.Institut de Chimie de la Matière Condensée de Bordeaux ICMCB-CNRS (UPR 9048)Pessac CedexFrance
  3. 3.Institut de Chimie de la Matière Condensée de Bordeaux ICMCB-CNRS (UPR 9048)Pessac CedexFrance

Personalised recommendations