Plant and Soil

, Volume 224, Issue 1, pp 1–14

The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues

  • Roger M. Gifford
  • Damian J. Barrett
  • Jason L. Lutze
Article

Abstract

The influence of elevated CO2 concentration ([CO2]) during plant growth on the carbon:nutrient ratios of tissues depends in part on the time and space scales considered. Most evidence relates to individual plants examined over weeks to just a few years. The C:N ratio of live tissues is found to increase, decrease or remain the same under elevated [CO2]. On average it increases by about 15% under a doubled [CO2]. A testable hypothesis is proposed to explain why it increases in some situations and decreases in others. It includes the notion that only in the intermediate range of N-availability will C:N of live tissues increase under elevated [CO2]. Five hypotheses to explain the mechanism of such increase in C:N are discussed; none of these options explains all the published results. Where elevated [CO2] did increase the C:N of green leaves, that response was not necessarily expressed as a higher C:N of senesced leaves. An hypothesis is explored to explain the observed range in the degree of propogation of a CO2 effect on live tissues through to the litter derived from them. Data on C:P ratios under elevated [CO2] are sparse and also variable. They do not yet suggest a generalising-hypothesis of responses. Although, unlike for C:N, there is no theoretical expectation that C:P of plants would increase under elevated [CO2], the average trend in the data is of such an increase. The processes determining the C:P response to elevated [CO2] seem to be largely independent of those for C:N. Research to advance the topic should be structured to examine the components of the hypotheses to explain effects on C:N. This involves experiments in which plants are grown over the full range of N and of P availability from extreme limitation to beyond saturation. Measurements need to: distinguish structural from non-structural dry matter; organic from inorganic forms of the nutrient in the tissues; involve all parts of the plant to evaluate nutrient and C allocation changes with treatments; determine resorption factors during tissue senescence; and be made with cognisance of the temporal and spatial aspects of the phenomena involved.

climate change CO2 decomposition leaf root litter nutrient concentration nutrient cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Roger M. Gifford
  • Damian J. Barrett
  • Jason L. Lutze

There are no affiliations available

Personalised recommendations