Quality and Quantity

, Volume 34, Issue 1, pp 87–102 | Cite as

The Ordinal Controversy Revisited

  • Jarl Kampen
  • Marc Swyngedouw


We present a discussion of the different dimensions of the ongoing controversy about the analysis of ordinal variables. The source of this controversy is traced to the earliest possible stage, measurement theory. Three major approaches in analyzing ordinal variables, called the non-parametric, the parametric, and the underlying variable approach, are identified and the merits and drawbacks of each of these approaches are pointed out. We show that the controversy on the exact definition of an ordinal variable causes problems with regard to defining ordinal association, and therefore to the interpretation of many recently designed models for ordinal variables, e.g., structure equation models using polychoric correlations, latent class models and ordinal response models. We conclude that the discussion with regard to ordinal variable modeling can only be fruitful if one makes a distinction between different types of ordinal variables. Five types of ordinal variables were identified. The problems concerning the analysis of these five types of ordinal variables are solved in some cases and remain a problem for others.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti, A. (1990). Categorical Data Analysis. Wiley: New York.Google Scholar
  2. Anderson, N. H. (1961). Scales and statistics: Parametric and non-parametric. Psychological Bulletin 58: 305–316.Google Scholar
  3. Atkinson, L. (1988). The measurement statistics controversy: Factor analysis and subinterval data. Bulletin of the Psychonomic Society 26: 361–364.Google Scholar
  4. Binder, A. (1984). Restrictions on statistics imposed by method of measurement. Journal of Criminal Justice 12: 467–481.Google Scholar
  5. Billiet, J., Swyngedouw, M., Frognier, A. P. & Van Vaerenberg, A.M. (1995). 1991 General Election Study Belgium, Codebook and Questionaire. Leuven/Louvain-la-Neuve: ISPO/PIOP.Google Scholar
  6. Boneau, C. A. (1961). A note on measurement scales and statistical tests. American Psychologist 16: 260–261.Google Scholar
  7. Bryson, K. R. & Phillips, D. P. (1974). A simple, near-optimal method for classifying univariate interval-scale and ordinal-scale data. In: D. R. Heise (ed.), Sociological Methodology 1975. San Fransisco: Jossey-Bass.Google Scholar
  8. Burke, C. J. (1963). Measurement scales and statistical models. In: M. H. Marx (ed.), Theories in Contemporary Psychology. New York: Macmillian.Google Scholar
  9. Coombs, C. (1950). Psychological scaling without a unit of measurement. Psychological Review 57: 145–158.Google Scholar
  10. Davison, M. L. & Sharma, A. R. (1994). ANOVA and ANCOVA of pre-and post-test, ordinal data. Psychometrika 59: 593–600.Google Scholar
  11. Fraser, C. O. (1980). Measurement in psychology. British Journal of Psychology 71: 23–34.Google Scholar
  12. Gaito, J. (1980). Measurement scales and statistics: resurgence of an old misconception. Psychological Bulletin 3: 564–567.Google Scholar
  13. Gilula, Z., Krieger, A. M. & Ritov, Y. (1988). Ordinal association in contingency tables: some interpretive aspects. Jour. Am. St. Ass. 402: 540–544.Google Scholar
  14. Goldstein, H. (1995). Multilevel Statistical Models. New York: Wiley.Google Scholar
  15. Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Jour. Am. St. Ass. 74: 537–552.Google Scholar
  16. Goodman, L. A. (1981). Association models and canonical correlation in the analysis of crossclassifications having ordered categories. Jour. Am. St. Ass. 76: 320–334.Google Scholar
  17. Hagenaars, J. A. (1990). Categorical Longitudinal Data. London: Sage.Google Scholar
  18. Hedeker, D. & Gibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics 50: 933–944.Google Scholar
  19. Hendry, D. F., Leamer, E. E. & Poirier, D. J. (1990). The ET-dialogue: a conversation on econometric methodology. Econometric Theory 6: 171–261.Google Scholar
  20. Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika 3: 381–389.Google Scholar
  21. Khurshid, A. & Sahai, H. (1993). Scales of measurement: An introduction and selected bibliography. Quality and Quantity 27: 303–323.Google Scholar
  22. Laird, N. M. (1979). A note on classifying ordinal scale data. In: K. F. Schuessler (ed.), Social Methodology. San Francisco: Jossey Bass, pp. 303–310.Google Scholar
  23. Marcus-Roberts, H. M. & Roberts, F. S. (1987). Meaningless statistics. Journal of Educational Statistics 12: 383–394.Google Scholar
  24. Markus, G. B. (1979). Analyzing Panel Data. London: Sage.Google Scholar
  25. McCullagh, P. (1980). Regression models forordinal data (with discussion). J. R. Statist. Soc. B42: 109–142.Google Scholar
  26. McCullagh, P. & Nelder, J. A. (1992). Generalised Linear Models. London: Chapman & Hall.Google Scholar
  27. McCutcheon, A. (1996). Multiple group association models with latent variables: An analysis of secular trends in abortion. Social Methodology 26: 80–111.Google Scholar
  28. Meehl, P. E. (1954). Clinical vs. Statistical Prediction. Mineapolis: University of Minnesota Press.Google Scholar
  29. Michell, J. (1986). Measurement scales and statistics: A clash of paradigms. Psychological Bulletin 3: 398–407.Google Scholar
  30. Nunnally, J. C. (1967). Psychometric Theory. New York: McGraw-Hill.Google Scholar
  31. Pearson, K. (1909). On a new method of determining the correlation between a measured character A and a character B. Biometrica 7: 96–105.Google Scholar
  32. Prytulak, L. S. (1975). A critique of S. S. Stevens' theory of measurement scale classification. Perceptual & Motor Skills 41: 3–28.Google Scholar
  33. Senter, R. J. (1969). Analysis of Data. Scott, Foreman and Company.Google Scholar
  34. Siegel, S. (1956, 1988). Nonparametric Statistics for the Behavioural Sciences. New York: McGraw-Hill.Google Scholar
  35. Stevens, S. S. (1951). Handbook of Experimental Psychology. New York: Wiley.Google Scholar
  36. Stevens, S. S. (1958). Measurement and man. Science 103: 677–680.Google Scholar
  37. Stewart, J. (1991). Econometric Theory. Hempstead, UK: Philip Alan.Google Scholar
  38. Tacq, J. (1977). Associatiematen voor kruistabellen. Leuven: NFWO.Google Scholar
  39. Vogt, W. P. (1993). Dictionary of Statistics and Methodology. London: Sage.Google Scholar
  40. Wilson, T. P. (1971). Critique of ordinal variables. Social Forces 49: 432–444.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jarl Kampen
    • 1
  • Marc Swyngedouw
    • 1
  1. 1.Faculty of Political and Social SciencesThe Catholic University of BrusselsBelgium

Personalised recommendations