Journal of Materials Science

, Volume 35, Issue 3, pp 649–653 | Cite as

Thermal conductivity of crystalline particulate materials

  • V. V. Murashov
  • Mary Anne White
Article

Abstract

In order to explore the relationship between effective thermal conductivity of an evacuated powder and the bulk thermal conductivity of the same material, the effective thermal diffusivities of particulate NaCl and Dianin's inclusion compound with ethanol guests (abbrev. ED) with effective porosities ≈ 0.5 were measured and used to determine their effective thermal conductivities below 300 K. Calculations showed that contact heat conduction is the predominant mechanism, i.e., heat transfer by radiation and by conduction through the gas phase are negligible in the measurement conditions. The effective thermal conductivity of particulate as-synthesised ED powder was found to be proportional to the bulk thermal conductivity for three different samples. On the other hand, the effective thermal conductivity of NaCl powder was found to have a softer temperature dependence than the bulk thermal conductivities reported for measurements of NaCl single crystals. This was related to increased concentration of structural defects formed during mechanical grinding of the NaCl sample.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. Jaeger, S. R. Nagel and R. P. Behringer, Physics Today 4 (1996) 32.Google Scholar
  2. 2.
    LORD Rayleigh, Phil. Mag. 34 (1892) 481.Google Scholar
  3. 3.
    W. Woodside and J. H. Messmer, J. Appl. Phys. 32 (1961) 1688.Google Scholar
  4. 4.
    M. A. Presley and P. R. Christensen, J. Geophys. Res. 102 (1997) 6535.Google Scholar
  5. 5.
    K. Watson, PhD thesis, CalTech, Pasadena, California, 1964.Google Scholar
  6. 6.
    R. B. Merrill, NASA TN D-5063, 1969.Google Scholar
  7. 7.
    A. E. Wechsler and A. D. Little, in Progr. Refrig. Sci. Technol., Proc. 12th Int. Congr. Refrig., 1967, Vol. 2 (1969), p. 267.Google Scholar
  8. 8.
    J. A. Fountain and E. A. West, J. Geophys. Res. 75 (1970) 4063.Google Scholar
  9. 9.
    V. V. Murashov and M. A. White, Rev. Sci. Instrum. 69 (1998) 4198.Google Scholar
  10. 10.
    V. V. Murashov, PhD thesis, Dalhousie University, Halifax, Canada, 1998.Google Scholar
  11. 11.
    M. Zakrzewski and M. A. White, Cond. Matt. News 2 (1993) 7.Google Scholar
  12. 12.
    K. Clusius, J. Goldman and A. Perlick, Z. Naturforch. 4A (1949) 424.Google Scholar
  13. 13.
    P. P. M. Meincke and G. M. Graham, Can. J. Physics 43 (1965) 1853.Google Scholar
  14. 14.
    T. Rubin, H. L. Johnston and H. W. Altman, J. Phys. Chem. 65 (1961) 65.Google Scholar
  15. 15.
    M. A. White and M. Zakrzewski, J. Incl. Phenom. Molec. Recog. Chem. 8 (1990) 215.Google Scholar
  16. 16.
    M. Zakrzewski, M. A. White and W. Abriel, J. Phys. Chem. 94 (1990) 2203.Google Scholar
  17. 17.
    J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids” (John Wiley & Sons, 1965).Google Scholar
  18. 18.
    J. P. Moore, R. J. Dippenaar, R. O. A. Hall and D. L. Mcelroy, ORNL / TM-8196 (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1982).Google Scholar
  19. 19.
    E. H. Kennard, “Kinetic Theory of Gases” (McGraw-Hill, 1938).Google Scholar
  20. 20.
    J. R. Thomas, Jr., in “Thermal Conductivity 20, Proc. 20th Int. Conf., Blacksburg, Virginia, 1987,” edited by P. H. Hasselman and J. R. Thomas, Jr. (Plenum, New York, 1989) p. 13.Google Scholar
  21. 21.
    E. D. Palik, editor, “Handbook of Optical Constants of Solids” (Academic Press, Inc., New York, 1985).Google Scholar
  22. 22.
    R. Siegel, “Thermal Radiation Heat Transfer,” 2nd ed. (Hemisphere Pub. Corp., Washington, 1981).Google Scholar
  23. 23.
    M. V. Klein and R. F. Caldwell, Rev. Sci. Instrum. 37 (1966) 1291.Google Scholar
  24. 24.
    G. Heinicke, “Tribochemistry” (Carl Hanser Verlag, München, 1984).Google Scholar
  25. 25.
    F. Dachile and R. Roy, Nature 186 (1960) 34.Google Scholar
  26. 26.
    I. Tsukushi, O. Yamamuro and T. Matsuo, Solid State Commun. 94 (1995) 1013.Google Scholar
  27. 27.
    V. V. Evdokimova and L. F. Vereshchagin, Soviet Phys. (JETP) 16 (1963) 855.Google Scholar
  28. 28.
    X. Li and R. Jeanloz, Phys. Rev. B. 36 (1987) 474.Google Scholar
  29. 29.
    D. G. Cahill, S. K. Watson and R. O. Pohl, ibid. 46 (1992) 6131.Google Scholar
  30. 30.
    O. Andersson, A. Soldatov and B. Sundqvist, ibid. 54 (1996) 3093Google Scholar
  31. 31.
    D. G. Cahill and R. O. Pohl, Ann. Rev. Phys. Chem. 39 (1988) 93.Google Scholar
  32. 32.
    M. Hofacker and H. Von Loehneysen, Z. Phys. B 42 (1981) 291.Google Scholar
  33. 33.
    M. Zakrzewski and M. A. White, Phys. Rev. B 45 (1992) 2809.Google Scholar
  34. 34.
    M. Zakrzewski, B. MrÓz, H. Kiefte, M. A. White and M. J. Clouter, J. Phys. Chem. 95 (1991) 1783.Google Scholar
  35. 35.
    J. F. Nye, “Physical Properties of Crystals” (Clarendon Press, Oxford, 1986).Google Scholar
  36. 36.
    P. G. Klemens, in “Solid State Physics,” Vol. 7, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1958) p. 1.Google Scholar
  37. 37.
    R. Bauer and E.U. SchlÑnder, Int. Chem. Eng. 18 (1978) 189.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • V. V. Murashov
    • 1
  • Mary Anne White
    • 2
  1. 1.Department of ChemistryDalhousie UniversityHalifaxCanada
  2. 2.Department of ChemistryDalhousie UniversityHalifaxCanada

Personalised recommendations