Advertisement

Quality and Quantity

, Volume 34, Issue 4, pp 331–351 | Cite as

Imputation of Missing Item Responses: Some Simple Techniques

  • Mark Huisman
Article

Abstract

Among the wide variety of procedures to handle missing data, imputingthe missing values is a popular strategy to deal with missing itemresponses. In this paper some simple and easily implemented imputationtechniques like item and person mean substitution, and somehot-deck procedures, are investigated. A simulation study was performed based on responses to items forming a scale to measure a latent trait ofthe respondents. The effects of different imputation procedures onthe estimation of the latent ability of the respondents wereinvestigated, as well as the effect on the estimation of Cronbach'salpha (indicating the reliability of the test) and Loevinger'sH-coefficient (indicating scalability). The results indicate thatprocedures which use the relationships between items perform best,although they tend to overestimate the scale quality.

missing data mean imputation hot-deck imputation item response theory simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dempster, A. P. & Rubin, D. B. (1983). Overview. In:W. G. Madow, I. Olkin & D. B. Rubin (eds), Incomplete Data in Sample Surveys, Vol. II: Theory and Bibliographies. New York: Academic Press, pp. 3–10.Google Scholar
  2. Greenlees, J. S., Reece, W. S. & Zieschang, K. D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed. Journal of the American Statistical Association 77: 251–261.Google Scholar
  3. Hendriks, A. A. J. (1997). The Construction of the Five-Factor Personality Inventory (FFPI). PhD Dissertation, The Netherlands: University of Groningen.Google Scholar
  4. Hunt, S. M., McKenna, S. P. & McEwen, J. (1993). Nottingham Health Profile (NHP). In: C. Koenig-Zahn, J. W. Furer & B. Tax (eds), Het meten van de gezondheidstoestand; 1-Algemene gezondheid. Assen: Van Gorcum, pp. 100–114.Google Scholar
  5. Huisman, M. (1998). Missing data in behavioral science research: Investigation of a collection of data sets. Kwantitatieve Methoden 57: 69–93.Google Scholar
  6. Kromrey, J. D. & Hines, C. V. (1994). Nonrandomly missing data in multiple regression: An empirical comparison of common missing-data treatments. Educational and Psychological Measurement 54: 573–593.Google Scholar
  7. Landerman, L. R., Land, K. C. & Pieper, C. F. (1997). An empirical evaluation of the predictive mean matching method for imputing missing values. Sociological Methods & Research 26: 3–33.Google Scholar
  8. Little, R. J. A. (1988). Missing-data adjustments in large surveys. Journal of Business & Economic Statistics 6: 287–296.Google Scholar
  9. Little, R. J. A. & Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley.Google Scholar
  10. Little, R. J. A. & Schenker, N. (1995). Missing data. In: G. Arminger, C. C. Clifford & M. E. Sobel (eds), Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York: Plenum Press, pp. 39–75.Google Scholar
  11. Lord, F. M. & Novick, M. R. (1968). Statistical Theories of Mental Test Scores. Reading: Addison-Wesley.Google Scholar
  12. Mokken, R. J. (1997). Nonparametric models for dichotomous responses. In: W. J. van der Linden & R. K. Hambleton (eds), Handbook of Modern Item Response Theory. New York: Springer-Verlag, pp. 351–367.Google Scholar
  13. Molenaar, I.W. & Sijtsma, K. (1984). Internal consistency and reliability in Mokken's nonparametric item response model. Tijdschrift voor Onderwijsresearch 9: 257–268.Google Scholar
  14. Rubin, D. B. (1976). Inference and missing data. Biometrika 63: 581–592.Google Scholar
  15. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.Google Scholar
  16. Sande, I. G. (1982). Imputation in surveys: Coping with reality. The American Statistician 36: 145–152.Google Scholar
  17. Sande, I. G. (1983). Hot-deck imputation procedures. In: W. G. Madow, I. Olkin & D. B. Rubin (eds), Incomplete Data in Sample Surveys, Vol. III: Proceedings of the Symposium. New York: Academic Press, pp. 339–349.Google Scholar
  18. Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.Google Scholar
  19. Schulte Nordholt, E. (1998). Imputation: Methods, simulation experiments and practical examples. International Statistical Review 66: 157–180.Google Scholar
  20. van der Zee, K. I. & Sanderman, R. (1993). Het meten van de algemene gezondheidstoestand met de RAND-36: Een handleiding. [Measuring the general state of health with the RAND-36: A manual.] Groningen: Northern Center for Healthcare Research (NCG).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Mark Huisman
    • 1
  1. 1.Department of Statistics, Measurement Theory, & Information TechnologyFPPSW, University of GroningenGroningenThe Netherlands

Personalised recommendations