Plant and Soil

, Volume 215, Issue 1, pp 85–91 | Cite as

Estimating C inputs retained as soil organic matter from corn (Zea Mays L.)

  • M.A. Bolinder
  • D.A. Angers
  • M. Giroux
  • M.R. Laverdière


In agroecosystems, the annual C inputs to soil are a major factor controlling soil organic matter (SOM) dynamics. However, the ability to predict soil C balance for agroecosystems is limited because of difficulties in estimating C inputs and in particular from the below-ground part. The objective of this paper was to estimate the proportion of corn residue retained as SOM. For that purpose, the results of a 13C long-term (15 yr) field study conducted on continuous silage corn and two silage corn rotations along with data from the existing literature were analyzed. The total amount of corn-derived C (0–30 cm) was about 2.5 to 3.0 times higher for the continuous corn treatment (445 g m-2), compared to the two rotational treatments (175 and 133 g m-2 for the corn-barley-barley-wheat and corn-underseeded barley hay-hay rotations, respectively). Assuming that the C inputs to the soil from silage-corn was mainly roots and would have been similar across treatments on an annual basis, the total amount of corn-derived C for the two rotational treatments was approximately proportional to the number of years the silage-corn was present in the rotation (4 yr). The results from the current study indicate that about 17% of root-derived C is retained as SOM. This value is higher than those reported in the literature for long-term studies on shoot-derived C (range of 7.7 to 20%, average of 12.2%), which is in agreement with previous studies showing that more C is retained as SOM from roots than from shoots.

13corn (Zea mays L.) shoot:root ratio shoot- and root-derived C soil organic matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agresti A 1990 Categorical data analysis. Wiley, New York. 558 pp.Google Scholar
  2. Amato M and Pardo A 1994 Root length and biomass losses during sample preparation with different screen mesh samples. Plant Soil 161, 299–303.CrossRefGoogle Scholar
  3. Anderson E L 1988Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant Soil 108, 245–251.CrossRefGoogle Scholar
  4. Angers D A, Voroney R P and Côté D 1995 Dynamics of soil organic matter and corn residues affected by tillage practices. Soil Sci. Soc. Am. J. 59, 1311–1315.CrossRefGoogle Scholar
  5. Balesdent J and Balabane M1996 Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28, 1261–1263.CrossRefGoogle Scholar
  6. Balesdent J, Mariotti A and Boisgontier D 1990 Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J. Soil Sci. 41, 587–596.CrossRefGoogle Scholar
  7. Barber S A 1971 Effect of tillage practice on corn (Zea mays L.) root distribution and morphology. Agron. J. 63, 724–726.CrossRefGoogle Scholar
  8. Barber S A 1979 Corn residue management and soil organic matter. Agron. J. 71, 625–627.CrossRefGoogle Scholar
  9. Barber D A and Martin J K 1976 The release of organic substances by cereal roots into soils. New Phytol. 76, 69–80.CrossRefGoogle Scholar
  10. Beauchamp E G and Voroney R P 1994 Crop carbon contribution to the soil with different cropping and livestock systems. J. Soil Water Cons. 49, 205–209.Google Scholar
  11. Bolinder M A, Angers D A and Dubuc J P 1997 Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric. Ecosyst. Environ. 63, 61–66.CrossRefGoogle Scholar
  12. Bottner P 1982 Biodégradation du matériel végétal en milieu herbacé. Acta Oecol. 3, 155–182.Google Scholar
  13. Bray J R, Lawrence D B and Pearson L C 1959 Primary production in some Minnesota terrestrial communities for 1957. Oikos. 10, 38–49.Google Scholar
  14. Buyanovsky G A and Wagner G H 1986 Post-harvest residue input to cropland. Plant Soil 93, 57–65.CrossRefGoogle Scholar
  15. Buyanovsky G A and Wagner G H 1987 Carbon transfer in a winter wheat (Triticum aestivum) ecosystem. Biol. Fertil. Soils 5, 76–82.CrossRefGoogle Scholar
  16. Carter M A, Angers D A, Gregorich E G and Bolinder M A 1997 Organic carbon and nitrogen stocks and storage profiles in cool, humid soils of eastern Canada. Can. J. Soil Sci. 77, 205–210.Google Scholar
  17. Chevalier P and Schrader L E 1977 Genotypic differences in nitrate absorption and partitioning of N among plant parts in Maize. Crop Sci. 17, 897–901.CrossRefGoogle Scholar
  18. Delas J and Molot C 1983 Effet de divers amendements organiques sur les rendements du maïs et de la pomme de terre cultivés en sol sableux. Agron. 3, 19–26.Google Scholar
  19. Djakovitch J L 1988 Mise au point d'une méthode de détermination rapide du coefficient isohumique de matériaux organiques utilisables pour l'amendement des sols. Thèse CNAM, Bordeaux, 208 pp.Google Scholar
  20. Donald C M and Hamblin J 1976 The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 28, 361–405.Google Scholar
  21. Eghball B and Maranville J W 1993 Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agron. J. 85, 147–153.CrossRefGoogle Scholar
  22. Foth H D 1962 Root and top growth of corn. Agron. J. 54, 49–52.CrossRefGoogle Scholar
  23. Gee G W and Bauder J W Particle-size analysis. pp. 377–382. In Methods of Soil Analysis. Part 1.2nd ed. (ed) A. Klute, Agron. Monogr. 9. ASA and SSSA, Madison, WI.Google Scholar
  24. Gregorich E G, Ellert B H and Monreal C M 1995 Turnover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance. Can. J. Soil Sci. 75, 161–167.Google Scholar
  25. Gregorich E G, Ellert B H, Drury C F and Liang B C 1996 Fertilization effects on soil organic matter turnover and corn residue storage. Soil Sci. Soc. Am. J. 60, 472–476.CrossRefGoogle Scholar
  26. Jenkinson D S 1965 Studies on the decomposition of plant material in soil. I. Losses of carbon from 14C labelled ryegrass incubated with soil in the field. J. Soil Sci. 16, 104–115.CrossRefGoogle Scholar
  27. Johansson G 1992 Below-ground carbon distribution in barley (Hordeum vulgare L.) with and without nitrogen fertilization. Plant Soil 144, 93–99.CrossRefGoogle Scholar
  28. Keith H, Oades J M and Martin J K 1986 Input of carbon to soil from wheat plants. Soil. Biol. Biochem.18, 445–449.CrossRefGoogle Scholar
  29. Larson WE, Clapp C E, Pierre W H and Morachan Y B 1972 Effects of increasing amounts of organic residues on continous corn: II. Organic carbon, nitrogen, phosphorus and sulfur. Agron. J. 64, 204–208.CrossRefGoogle Scholar
  30. Lubet E and Juste C 1985 Cinétique de la production de matière sèche et des prélèvements d'éléments nutritifs par une culture irriguée de maïs à haute potentialité de rendement. Agron. 5, 239–252.Google Scholar
  31. Muller J C and Rémy J C 1980 Influence de l'azote minéral sur la cinétique de décomposition des pailles. In: CR Contrat CEEINRA, No: 326–78–1 ESF.Google Scholar
  32. Oades J M 1995 An overview of processes affecting the cycling of organic carbon in soils. In: The Role of Non-Living OrganicMatter in the Earth's Carbon Cycle. Eds R.G. Zepp and Ch. Sonntag, pp. 293–303. Dahlem Workshop reports, John Wiley, New York.Google Scholar
  33. Plénet D, Lubet E and Juste C 1993 Évolution à long terme du statut carboné du sol en monoculture non irriguée du maïs (Zea mays L). Agron. 13, 685–698.Google Scholar
  34. Rasmussen P E, Allmaras R R, Rohde C R and Roager Jr N C 1980 Crop residue influences on soil carbon and nitrogen in a wheatfallow system. Soil Sci. Soc. Am. J. 44, 596–600.CrossRefGoogle Scholar
  35. Sauerbeck D R and Johnen B G 1977 Root formation and decomposition during plant growth. In: Soil Organic Matter Studies. IAEA, Vienne, 424 pp.Google Scholar
  36. Shamoot S, McDonald L and Bartholomew W V 1968 Rhizodeposition of organic debris in soil. Soil Sci. Soc. Am. Proc. 32, 817–820.CrossRefGoogle Scholar
  37. Swerhone G D W, Hobson K A, Van Kessel C and Boutton T W 1991 An economical method for the preparation of plant and animal tissue for δ 13C analysis. Commun. Soil Sci. Plant Anal. 22, 177–190.CrossRefGoogle Scholar
  38. Swinnen J, Van Veen J A and Merckx R 1995 Carbon fluxes in the rhizosphere of winter wheat and spring barley with conventional vs integrated farming. Soil. Biol. Biochem. 27, 811–820.CrossRefGoogle Scholar
  39. Thorne D W and Peterson H B 1954 Irrigated soils: their fertility and management. 2nd Ed. The Blakiston Co., New York.Google Scholar
  40. Van Noordwijk M, Floris J and De Jager A 1987 Sampling schemes for estimating root density distribution in cropped fields. Neth. J. Agr. Sci. 33, 241–262.Google Scholar
  41. Warncke D D and Barber S A 1974 Root development and nutrient uptake of corn grown in solution culture. Agron. J. 66, 514–516.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M.A. Bolinder
    • 1
  • D.A. Angers
    • 1
  • M. Giroux
    • 2
  • M.R. Laverdière
    • 3
  1. 1.Centre de recherche et de développement sur les sols et les grandes culturesAgriculture et Agroalimentaire CanadaSainte-Foy (Québec)Canada
  2. 2.Centre de recherche et d'expérimentation en solsMAPAQ, Complexe ScientifiqueSainte-Foy (Québec)Canada
  3. 3.Département des sols et de génie agroalimentaireUniversité LavalSainte-Foy (Québec)Canada

Personalised recommendations