Journal of Materials Science

, Volume 35, Issue 11, pp 2701–2710 | Cite as

The solid state chemistry of metakaolin-blended ordinary Portland cement

  • N. J. Coleman
  • W. R. Mcwhinnie


The hydration of ordinary Portland cement (OPC) pastes containing 0 and 20% metakaolin was monitored by differential thermal analysis (DTA) and solid state magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The presence of hydrated gehlenite and a relative reduction in calcium hydroxide content of the metakaolin-blended OPC pastes observed by DTA are indicative of the pozzolanic reaction of metakaolin. An increase in the capacity of metakaolin-blended OPC pastes to exclude chloride ions from the pore electrolyte phase, via solid phase binding, has been reported. It is proposed that this increase in chloride binding capacity could be attributed to the participation of calcium aluminate species in the formation of Friedel's salt which would otherwise be engaged in the formation of hydrated gehlenite and other AFm phases. The accelerating effect of replacement additions of metakaolin has been shown by 29Si NMR and was denoted by a comparative increase in the intensity of resonances arising from Q1 and Q2 species compared with that of Q0 species for metakaolin-blended specimens. The primary reactive centres of the pozzolan have been shown to be the 5-coordinate aluminium and amorphous silica. The spreading of the Q4 resonance of the amorphous silica of metakaolin through the Q3 and into the Q2 and Q1 regions of the NMR spectrum during pozzolanic reaction has been observed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Murat, Cem. Concr. Res. 13 (1983) 259.Google Scholar
  2. 2.
    Idem., ibid. 13 (1983) 511.Google Scholar
  3. 3.
    M. Murat and C. Comel, ibid. 13 (1983) 631.Google Scholar
  4. 4.
    J. Ambroise, M. Murat and J. Pera, Silicates Indus. 9/10 (1989) 165.Google Scholar
  5. 5.
    P. S. De silva and F. P. Glasser, Adv. Cem. Res. 12 (1990) 167.Google Scholar
  6. 6.
    P. S. De silva and F. P. Glasser, Cem. Concr. Res. 23 (1993) 627.Google Scholar
  7. 7.
    J. Ambroise, S. Maximilien and J. Pera, Advanced Cement Based Materials 1(4) (1994) 161.Google Scholar
  8. 8.
    S. Wild, J. M. Khatib and A. Jones, Cem. Concr. Res. 26 (1996) 1537.Google Scholar
  9. 9.
    S. Wild and J. M. Khatib, ibid. 27 (1997) 137.Google Scholar
  10. 10.
    C. L. Page and K. W. J. Treadaway, Nature 297 (1982) 109.Google Scholar
  11. 11.
    N. J. Coleman and C. L. Page, Cem. Concr. Res. 27 (1997) 147.Google Scholar
  12. 12.
    R. L. Day, ibid. 18 (1988) 63.Google Scholar
  13. 13.
    R. F. Feldman and J. J. Beaudoin, ibid. 21 (1991) 297.Google Scholar
  14. 14.
    H. F. W. Taylor, “Cement Chemistry” (Academic Press Limited, London, 1990) Ch. 6.Google Scholar
  15. 15.
    A. K. Suryavanshi, J. D. Scantlebury and S. B. Lyon Cem. Concr. Res. 25 (1995) 581.Google Scholar
  16. 16.
    N. J. Coleman, unpublished data.Google Scholar
  17. 17.
    J. Rocha, J. M. Adams and J. Klinowski, J. Chem. Soc., Chem. Commun. (1991) 582.Google Scholar
  18. 18.
    H. F. W. Taylor, “Cement Chemistry” (Academic Press Limited, London, 1990) p. 167.Google Scholar
  19. 19.
    A. K. Suryavanshi, J. D. Scantlebury and S. B. Lyon, Cem. Concr. Res. 26 (1996) 717.Google Scholar
  20. 20.
    N. J. Coleman and W.R. Mcwhinnie, in preparation.Google Scholar
  21. 21.
    N. J. Coleman, PhD Thesis, Aston University, 1996.Google Scholar
  22. 22.
    H. S. Pietersen, A. P. M. Kentgens, G. H. Nachtegaal, W. S. Veeman and J. M. Bijen, in Istanbul Conference A.C.I. Special Publication SP 123-44 1992, p. 795.Google Scholar
  23. 23.
    G. Parry-jones, A. H. J. Al-tayyib and A. I. Almana, Cem. Concr. Res. 18 (1988) 229.Google Scholar
  24. 24.
    E. T. Lippmaa, M. Magi and M. Tarmak, W. Wieker and A. R. Grimmer, ibid. 12 (1982) 597.Google Scholar
  25. 25.
    J. Hjorth, J. Skibsted and H. J. Jakobsen, Cem. Concr. Res. 18 (1988) 789.Google Scholar
  26. 26.
    J. Skibsted, J. Hjorth and H. J. Jakobsen, Chem. Phys. Lett 172 (1990) 279.Google Scholar
  27. 27.
    D. S. Klimesch, G. Lee, A. Rayand M. A. Wilson, Adv. Cem. Res. 10 (1998) 93.Google Scholar
  28. 28.
    M. Akram and W. R. Mcwhinnie, unpublished data.Google Scholar
  29. 29.
    J. Skibsted and H. J. Jakobsen, J. Chem. Soc., Faraday Trans 90 (1994) 2095.Google Scholar
  30. 30.
    E. Lippmaa, M. Magi, A. Samoson, G. Englehardt and A. R. Grimmer, J. Am. Chem. Soc. 102 (1980) 4889.Google Scholar
  31. 31.
    M. Magi, E. Lippmaa, A. Samoson, G. Englehardt and A. R. Grimmer, J. Phys. Chem. 88 (1984) 1518.Google Scholar
  32. 32.
    D. Muller, W. Gessner, A. Samoson, E. Lippmaa and G. Scheler, J. Chem. Soc. Dalton Trans. 6 (1986) 1277.Google Scholar
  33. 33.
    G. M. M. Bell, J. Bensted, F. P. Glasser, E. E. Lachowski, D. R. Roberts and M. J. Taylor, Adv. Cem. Res. 3 (1990) 23.Google Scholar
  34. 34.
    S. U. Al-dulaijan, A. H. J. Al-tayyib, M. M. Alzahrani, G. Parry-jones and A. I. Al-mana, J. Am. Ceram. Soc. 78 (1995) 342.Google Scholar
  35. 35.
    A. R. Brough, C. M. Dobson, I. G. Richardson and G. W. Groves, J. Mater. Sci. 30 (1995) 1671.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • N. J. Coleman
    • 1
  • W. R. Mcwhinnie
    • 2
  1. 1.Department of MaterialsImperial College of Science, Technology and MedicineLondonUK
  2. 2.Department of Chemical Engineering and Applied ChemistryAston UniversityBirminghamUK

Personalised recommendations