Journal of Materials Science

, Volume 34, Issue 22, pp 5557–5567 | Cite as

Microstructural nature of strengthening and toughening in Al2O3-SiC(p) nanocomposites

  • C. C. Anya


It is demonstrated that neither of the theories based on flaw size, surface flaw healing or residual stress adequately and consistently explain the strengthening and toughening phenomena in Alumina-SiC nanocomposites. SiC presence reduces the amount of amorphous (glassy) silica rich phase (SRP) in the nanocomposite relative to that found in monolithic Alumina and to a level that the effect of SRP is negligible. The reduction of SRP and the multipliable effect of microstructural features such as dislocations, crack/particle interactions and cleavage steps, observed in these materials at an extraordinarily small scale (due to the nano-size of the SiC particles), are suggested to be more consistent in explaining these phenomena. Owing to the nano-scale at which these features operate, which is far below the practical resolution limit of the Scanning Acoustic Microscope (SAM), it is also argued that the latter may not be a good method for studying these materials.


Polymer Alumina Residual Stress Good Method Surface Flaw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Z. Wu, C. W. Lawrence, S. G. Roberts and B. Derby, Acta Mater. 46 (1998) 3839.Google Scholar
  2. 2.
    C. C. Anya and S. G. Roberts, J. Euro. Ceram. Soc. 16(10) (1996) 1107.Google Scholar
  3. 3.
    C. C. Anya, J. Mater. Sci. 33 (1998) 977.Google Scholar
  4. 4.
    I. A. Chou, H. M. Chan and M. P. Harmer, J. Amer. Ceram. Soc. 79 (1996) 2403.Google Scholar
  5. 5.
    T. Ohji, T. Hirano, A. Nakahira and K. Niihara, ibid. 79(1) (1996) 33.Google Scholar
  6. 6.
    K. Niihara, J. Ceram. Soc. Jpn. 99(10) (1991) 974.Google Scholar
  7. 7.
    T. Nose and T. Fujii, J. Amer. Ceram. Soc. 71(5) (1988) 328.Google Scholar
  8. 8.
    K. Niihara, A. Nakahira, G. Sasaki and M. Hirabayashi, in “Proceed. Mater. Res. Soc. on Advanced Mater.,” Vol. 4, edited by M. Doyama, S. Somiya and R. P. H. Chang (Mater. Res. Soc. Pittsburgh, PA, 1989) p. 129.Google Scholar
  9. 9.
    K. Niihara and A. Nakahira in “Proceed. 3rd Intl. Symp. on Ceramic Materials and Components for Engines,” edited by V. J. Tennery, (Amer. Ceram. Soc. Westerville, OH, 1988) 919.Google Scholar
  10. 10.
    K. Niihara and A. Nakahira, in “Advanced Structural Inorganic Composites,” edited by P. Vincentini (Elsevier, Trieste, Italy, 1990) p. 637.Google Scholar
  11. 11.
    J. Otsuka, S. Iio, Y. Tajima, M. Watanabe and K. Tanaka, J. Ceram. Soc. Jpn. 102 (1994) 29.Google Scholar
  12. 12.
    J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan and G. A. Miller, J. Amer. Ceram. Soc. 76(2) (1993) 503.Google Scholar
  13. 13.
    Y. Ikuma and A. V. Virkar, J. Mater. Sci. 19 (1984) 2233.Google Scholar
  14. 14.
    C. C. Anya and S. G. Roberts, J. Euro. Ceram. Soc 17(4) (1997) 565.Google Scholar
  15. 15.
    J. C. Glandus, T. Rouxel and Q. Tai, Ceram. Intnal. 17 (1991) 129.Google Scholar
  16. 16.
    B. J. Hockey, J. Amer. Ceram. Soc. 54 (1971) 223.Google Scholar
  17. 17.
    B. Mussler, M. V. Swain and M. Clausen, ibid. 65(11) (1982) 566.Google Scholar
  18. 18.
    H. L. O'Donnell, M. J. Readey and D. Kovar, ibid. 78(4) (1995) 849.Google Scholar
  19. 19.
    B. Lawn, “Fracture of Brittle materials,” 2nd Ed. (Cambridge Univ. Press, Cambridge, UK, 1993) p. 194.Google Scholar
  20. 20.
    C. C. Anya, J. Mater. Sci. Lttrs. 16 (1997) 1300.Google Scholar
  21. 21.
    L. Carroll, M. Sternitzke and B. Derby, Acta Mater. 44(11) (1996) 4543.Google Scholar
  22. 22.
    F. L. Matthews and R. D. Rawlings, “Composite Materials: Engineering and Science,” (Chapman and Hall, London, 1994) chap. 11.Google Scholar
  23. 23.
    M. Sakai and R. C. Bradt, Intl. Mats. Review 38(2) (1993) 53.Google Scholar
  24. 24.
    R. W. Davidge, “Mechanical Behaviour of Ceramics,” (Cambridge Univ. Press, Cambridge UK, 1986) 31.Google Scholar
  25. 25.
    I. Levin, W. D. Kaplan, D. G. Brandon and T. Weider, Acta Metall. Mater. 42(4) (1994) 1147.Google Scholar
  26. 26.
    C. E. Borsa, S. Jiao, R. I. Todd and R. J. Brook, J. Micros. 177(3), (1995) 305.Google Scholar
  27. 27.
    B. R. Lawn, B. J. Hockey and S. M. Wiederhorn, J. Mater. Sci. 15 (1980) 1207.Google Scholar
  28. 28.
    J. Fang, H. M. Chan and M. P. Harmer, Mater. Sci. Eng., A 195 (1995) 163.Google Scholar
  29. 29.
    C. W. Lawrence, G. A. D. Briggs and C. B. Scruby, J. Mater. Sci. 28 (1993) 3645.Google Scholar
  30. 30.
    IbidIbid. 28 Ibid (1993) Ibid., 3635.Google Scholar
  31. 31.
    P. D. Warren, C. W. Lawrence, S. G. Roberts, G. A. D. Briggs, C. Pecorari, O. V. Kolosov and M. M. Puentes-Heras, British Ceram. Procd. 57 (1996) 167.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C. C. Anya
    • 1
  1. 1.Kidlington, OxfordUnited Kingdom

Personalised recommendations