Journal of Materials Science

, Volume 35, Issue 2, pp 427–435 | Cite as

Rubber toughening of plastics Part XIII Dilatational yielding in PA6.6/EPR blends

  • C. B. Bucknall
  • A. Lazzeri


Tensile tests were carried out at both constant stress and constant extension rate on polyamide 6.6 blends containing 0–20 wt% of maleinated ethylene-propylene rubber (EPR-g-ma), using specimens conditioned at 50% RH. Longitudinal and lateral strain measurements on creep specimens showed that blends containing EPR-g-ma exhibited dilatation at tensile stresses above 27 MPa. This observation is consistent with the predictions of the particle cavitation model proposed in an earlier paper (A. Lazzeri and C. B. Bucknall, J. Mater. Sci. 28 (1993) 6799). In standard tensile tests on PA6.6/EPR-g-ma blends, cavitation preceded yielding (defined by the 1% offset strain). Creep and yield data obtained over a range of temperatures and strain rates were correlated using the Eyring equation. The onset of dilatation in these PA6.6/EPR blends was marked by a change in deformation kinetics, which is analysed using a modified version of Gurson's equation.


Rubber Tensile Test Cavitation Tensile Stress Lateral Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Bucknall, P. S. Heather and A. Lazzeri, J. Mater. Sci. 24 (1989) 2255.Google Scholar
  2. 2.
    A. Lazzeri and C. B. Bucknall, ibid. 28 (1993) 6799.Google Scholar
  3. 3.
    C. B. Bucknall, A. Karpodinis and X. C. Zhang, ibid. 29 (1994) 3377.Google Scholar
  4. 4.
    A. Lazzeri and C. B. Bucknall,Polymer 36 (1995) 2895.Google Scholar
  5. 5.
    ASTM Standard D 638.Google Scholar
  6. 6.
    A. Cross and R. N. Haward, J. Polym. Sci., Polym Phys edn 11 (1973) 2423.Google Scholar
  7. 7.
    N. G. Mc crum, C. P. Buckley and C. B. Bucknall, “Principles of Polymer Engineering,” 2nd edn (Oxford University Press, Oxford, 1997).Google Scholar
  8. 8.
    H. Eyring, J. Chem. Phys. 4 (1936) 283.Google Scholar
  9. 9.
    E. N. da c. andrade, Proc. Roy. Soc. A84 (1910) 1.Google Scholar
  10. 10.
    L. L. Ban, M. J. Doyle, M. M. Disko and G. R. Smith, Polymer Comm. 29 (1988) 163.Google Scholar
  11. 11.
    A. L. Gurson, J. Engng. Mater. Technol., Trans. ASME 99 (1977) 2.Google Scholar
  12. 12.
    H. J. Jeong and J. Pan, Int. J. Solid Structures 32 (1995) 3669.Google Scholar
  13. 13.
    A. C. Steenbrink, E. Van der giessen and P. D. Wu, J. Mech. Phys Solids 45 (1997) 405.Google Scholar
  14. 14.
    V. Tvergaard, Int. J. Fracture, 17 (1981) 389.Google Scholar
  15. 15.
    V. Tvergaard, Int. J. Fracture 18 (1982) 237.Google Scholar
  16. 16.
    C. Cheng, A. Hiltner, E. Baer, P. R. Soskey and S. G. Mylonakis, J. Appl. Polym. Sci. 52 (1994) 177.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C. B. Bucknall
    • 1
  • A. Lazzeri
    • 2
  1. 1.Advanced Materials DepartmentCranfield UniversityBedfordUK
  2. 2.Centre for Materials EngineeringUniversity of PisaPisaItaly

Personalised recommendations