Advertisement

Journal of Materials Science

, Volume 35, Issue 3, pp 567–572 | Cite as

The determination of the elastic modulus of microcantilever beams using atomic force microscopy

  • B. T. Comella
  • M. R. Scanlon
Article

Abstract

An investigation into the determination of the micromechanical properties of thin film materials has been performed. Thin metal and ceramic films are used extensively in the computer microprocessor industry and in the field of micro-electromechanical systems (MEMS). The demand for miniaturization and increased performance has resulted in the use of materials without a clear understanding of their mechanical properties on this scale. Micromechanical properties are difficult to obtain due to the lack of adequate testing equipment. The atomic force microscope (AFM), most commonly used as an imaging tool, lends itself to mechanical interaction with the sample surface utilizing a cantilever probe. An array of aluminum microcantilever beams were fabricated using standard IC processing techniques. The microbeams were deflected by the AFM cantilever probe and from this, the micromechanical properties of stiffness and elastic modulus were determined. Initial results indicate that this technique reliably determines the micromechanical properties of thin films.

Keywords

Elastic Modulus Atomic Force Microscope Mechanical Interaction Testing Equipment Imaging Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wang, S. Crary and K. Najafi, Mat. Res. Soc. Symp. Proc. (1992) 203-208.Google Scholar
  2. 2.
    K. E. Peterson, IEEE Trans. Electron Devices ED-25(10) (1978) 1241-1250.Google Scholar
  3. 3.
    H. A. C. Tilmans, PhD dissertation, MESA Research Inst., Univ. Twente, Enschede, The Netherlands, 1993.Google Scholar
  4. 4.
    J. A. Scweitz, MRS Bulletin (1992) 34-45.Google Scholar
  5. 5.
    N. A. Burnham, R. J. Colton and H. M. Pollock, J. Vac. Sci. and Tech. A 9 (1991) 2548-2556.Google Scholar
  6. 6.
    S. M. Hues, R. J. Colton, E. Meyer and H. J. Guntherodt, MRS Bulletin 18 (1993) 41-49.Google Scholar
  7. 7.
    N. A. Burnham and R. J. Colton, J. Vac. Sci. and Tech. A 7 (1989) 2906-2913.Google Scholar
  8. 8.
    N. A. Burnham, R. J. Colton and H. M. Pollock, Nanotechnology 4 (1993) 64-80.Google Scholar
  9. 9.
    S. M. Hues, C. F. Draper and R. J. Colton, J. Vac. Sci. and Tech. B 12 (1994) 2211-2214.Google Scholar
  10. 10.
    M. R. Vanlandingham, S. H. Mcknight, G. R. Palmese, R. F. Eduljee, J. W. Gillespie, Jr. and R. L. Mccullogh, J. Mater. Sci. Letters, submitted, 1996.Google Scholar
  11. 11.
    M. R. Vanlandingham, S. H. Mcknight, G. R. Palmese, J. R. Elings, X. Huang, T. A. Bogetti, R. F. Eduljee and J. W. Gillespie, Jr., J. Adhesion, submitted, 1996.Google Scholar
  12. 12.
    M. R. Vanlandingham, S. H. Mcknight, G. R. Palmese, R. F. Eduljee, J. W. Gillespie, Jr. and R. L. Mccullogh, Mat. Res. Soc. Proc. (1997) 440Google Scholar
  13. 13.
    J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, Rev. Sci. Instrum. 64(2) (1993) 403-405.Google Scholar
  14. 14.
    A Torii, M. Sasaki, K. Hane and S. Okuma, Meas. Sci. Tech. 7 (1996) 179-184.Google Scholar
  15. 15.
    Digital Instruments, Santa Barbara, California.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • B. T. Comella
    • 1
  • M. R. Scanlon
    • 2
  1. 1.Department of Mechanical EngineeringRochester Institute of TechnologyRochester
  2. 2.Department of Mechanical EngineeringRochester Institute of TechnologyRochester

Personalised recommendations