Journal of Materials Science

, Volume 34, Issue 22, pp 5419–5436

Review In Situ high-temperature optical microscopy

Article

Abstract

High-temperature optical microscopy is an essential in situ characterisation and monitoring technique with wide applications in different areas of materials science. The devices used include commercial available instruments, known as heating microscopes, and custom-made devices, usually called “high-temperature processing microscopes” or “thermo-optical instruments”. The different areas of applications of high-temperature optical microscopy are discussed on the basis of practical examples drawn from the literature. Besides the classical use of the technique to study the melting and softening behaviour of glass, slags, ashes and other silicate and ceramic materials, this review covers alternative applications, in particular the use of heating microscopes as “optical dilatometers” to investigate the sintering kinetics of powder compacts. In this regard, the advantages of the technique over conventional dilatometry are emphasised. A variety of custom-made devices is described, developed to investigate particular problems, such as delamination and curling of laminate composites during densification, cosintering of multilayer metal-ceramic and ceramic-ceramic systems, and wetting behaviour of liquid phases on rigid substrates. As a particular example of such a custom-made equipment, a novel, multi-purpose high-temperature processing microscope is described, and its application potential, which is well beyond that of commercial devices, is outlined. This instrument is unique in that it combines both vertical and horizontal sample observation capability, as well as the possibility to investigate samples of relatively large sizes (65 mm3), i.e. about 10 times larger than those suitable for commercial heating microscopes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Chamot and C. W. Mason, in “Handbook of Chemical Microscopy,” Vol. I, 2nd ed. (John Wiley & Sons, New York, 1938) pp. 198–204.Google Scholar
  2. 2.
    R. Clevenger, Ind. Eng. Chem. 16 (1924) 854.Google Scholar
  3. 3.
    P. K. Gallagher, in “Thermal Characterisation of Polymeric Materials,” Vol. 1, 2nd ed., edited by E. A. Turi (Academic Press, San Diego, 1997) pp. 149–155.Google Scholar
  4. 4.
    P. A. Tick, K. E. Lu, S. Mitachi, T. Kanamori and S. Takahashi, J. of Non-Cryst. Solids 140 (1992) 275–280.Google Scholar
  5. 5.
    R. J. Miller and H. F. Gleeson, Meas. Sci. Technol. 5 (1994) 904–911.Google Scholar
  6. 6.
    E. M. Daver and W. J. Ullrich, in “Experimental Techniques in Powder Metallurgy,” edited by J. S. Hirschhorn and K. H. Roll (Plenum Press, New York, 1970) pp. 189–200.Google Scholar
  7. 7.
    F. A. Costa Oliveira, R. J. Fordham, S. Canetoli and J. H. W. De Wit, Key Eng. Mat. 113 (1996) 91–98.Google Scholar
  8. 8.
    Y. Maeda and M. Koizumi, Rev. Sci. Instrum. 67 (1996) 2030–2031.Google Scholar
  9. 9.
    Linkam Scientific Instruments: Heating and Freezing Stages, Product Information, 1998.Google Scholar
  10. 10.
    D. M. Price, European Microscopy and Analysis 53(5) (1998) 21–23.Google Scholar
  11. 11.
    B. E. Dom, H. E. Evans and D. M. Torres, in “Adhesion Aspects of Polymeric Coatings,” edited by K. L. Mittal (Plenum Press, New York, 1983) pp. 597–612.Google Scholar
  12. 12.
    “Materials Science and Technology, Vol. 2B: Characterisation of Materials,” edited by R. W. Cahn, P. Haasen and E. J. Cramer. (Wiley-VCH, 1993).Google Scholar
  13. 13.
    “Handbook of Microscopy, Applications in Materials Science, Solid-State Physics and Chemistry,” edited by S. Amelinckx, D. van Dyck, J. van Landuyt and G. van Tendeloo (VCH, Weinheim, 1997).Google Scholar
  14. 14.
    ASM Handbook, Vol. 17, Nondestructive Evaluation and Quality Control (ASM International, Ohio, 1989).Google Scholar
  15. 15.
    Leica Mikroskopie und Systeme GmbH, LEITZ Heating Microscopes, Product Information N. 913661. Leica Mikroskopie und Systeme GmbH, Wetzlar (Germany).Google Scholar
  16. 16.
    Misura 2.0: Automatic Heating Microscope with Integrated Image Analysis, Product Information. Expert System srl, Modena (Italy).Google Scholar
  17. 17.
    W. Radmacher, Brensstoff-Chemie 30 (1949) 377–384.Google Scholar
  18. 18.
    K. H. Endell, Z. Krist. 56 (1921) 191.Google Scholar
  19. 19.
    E. Ebert, Organ f¨ur die Forstschritte des Eisenbahnwesens 85 (1930) 410.Google Scholar
  20. 20.
    W. Mann, Ber. Deutsch. Keram. Gesell. 29 (1952) 163–168.Google Scholar
  21. 21.
    S. Schor, Energie 8 (1956) 2–4.Google Scholar
  22. 22.
    A. Zwetsch, Ber. Deutsch. Keram. Gesell. 33 (1956) 349–357.Google Scholar
  23. 23.
    A. Metz, Radex-Rundschau 4 (1959) 612–616.Google Scholar
  24. 24.
    R. GÖrke and K.-J. Leers, Keramische Zeitschrift 48 (1996) 300–305.Google Scholar
  25. 25.
    A. Metz, Keram. Zeitschrift 6 (1962) 351–354.Google Scholar
  26. 26.
    B. Luthard, Fa. Leica,Wetzlar (Germany), personal communication (1998).Google Scholar
  27. 27.
    A. Metz, Silikat-Journal 3 (1964) 273–278.Google Scholar
  28. 28.
    H. Scholze, Ber. Dtsch. Keram. Ges. 39 (1962) 63–68.Google Scholar
  29. 29.
    H. Jebsen-Marwedel, Glastech. Ber. 27 (1954) 172–173.Google Scholar
  30. 30.
    H. S. Kim, R. D. Rawlings and P. S. Rogers, J. Mater. Sci. 24 (1989) 1025–1037.Google Scholar
  31. 31.
    T.-F. Lee and Y.-C. Ko, Ceram. Bull. 61 (1982) 737–740.Google Scholar
  32. 32.
    I. Vicente Magarino, J. Ma. RincÓn, P. Bowles, R. D. Rawlings and P. S. Rogers, Glass Technol. 33 (1992) 49–52.Google Scholar
  33. 33.
    H. J. Padberg, cfi/Ber. DKG 70 (1993) 598–602.Google Scholar
  34. 34.
    D. S. Buist, Br. Ceram. Soc. Trans. 69 (1970) 15–20.Google Scholar
  35. 35.
    R. Conradt, in “Proc.HVG/NCNGColloquium: Melting Processes in Glass Furnaces,” edited by H. A. Schaeffer and R. G. C. Beerkens (German Glass Society (DGG) 1998).Google Scholar
  36. 36.
    E. Gugel Und F. Czedik-Eysenberg, Berg-und h¨uttenmännische Monatsh. 105 (1960) 201–210.Google Scholar
  37. 37.
    K. H. Clemens, Mitt. VDEfa 9 (1961) 97–108.Google Scholar
  38. 38.
    E. Hofmann, Stahl und Eisen 79 (1959) 846–854.Google Scholar
  39. 39.
    F. Reich and J. D. Panda, TIZ-Zbl. 85 (1961) 186–190.Google Scholar
  40. 40.
    Idem., Tonindustrie-Zeitung 85 (1961) 223–229.Google Scholar
  41. 41.
    F. Zapp and I. Domagala, Keramische Zeitschrift 6 (1954) 505–508.Google Scholar
  42. 42.
    K. Spangenberg, Silikatechnik 5 (1954) 330.Google Scholar
  43. 43.
    F. Freund, Ber. Dtsch. Keram. Ges. 37 (1960) 209–218.Google Scholar
  44. 44.
    R. M. German, “Sintering Theory and Practice” (John Wiley & Sons, New York, 1996).Google Scholar
  45. 45.
    O. S. Ozgen and G. M. Fryer, Trans. Br. Ceram. Soc. 80 (1981) 67–70.Google Scholar
  46. 46.
    X. Elias and A. Viedma, Keram. Zeitschrift 32 (1984) 420–425.Google Scholar
  47. 47.
    D. Harkort and D. Paetsch, Ber. Dtsch. Keram. Ges. 37 (1960) 402–409.Google Scholar
  48. 48.
    H. E. Exner, Powd. Metall. 4 (1980) 203–209.Google Scholar
  49. 49.
    K.-D. Kim, J. Mat. Res. 10 (1995) 1846–1849.Google Scholar
  50. 50.
    L. C. Dejonghe and M. N. Rahaman, Rev. Sci. Instrum. 55 (1984) 2007–2010.Google Scholar
  51. 51.
    M. N. Rahaman, L. C. Dejongue, G. W. Scherer and R. J. Brook, J. Amer. Ceram. Soc. 70 (1987) 766–780.Google Scholar
  52. 52.
    A. R. Boccaccini, Science of Sintering 23 (1991) 151–161.Google Scholar
  53. 53.
    U. Partsch, C. Kretzschmar, E. K. Polzer, P. Otschlik, J.-H. Meyer, in “Werkstoffwoche 96: Werkstoffe f¨ur die Informationstechnik,” edited by H. Thomann (DGM Informationsgesellschaft, Oberursel, 1997) pp. 139–144.Google Scholar
  54. 54.
    Z. Panek, J. Mater. Sci. 29 (1994) 5383–53889.Google Scholar
  55. 55.
    W. S. Hackenberger, T. R. Shrout and R. F. Speyer, in “Sintering Technology,” edited by R. M. German, G. L. Messing and R. G. Cornwall (Marcel Dekker, New York, 1996) pp. 505–512.Google Scholar
  56. 56.
    M. Paganelli, Ind. Ceram. 16 (1996) 1–6.Google Scholar
  57. 57.
    M. Ferraris and E. Verne, J. Europ. Ceram. Soc. 16 (1996) 421–427.Google Scholar
  58. 58.
    E. VernÉ, M. Ferraris, A. Ventrella, L. Paracchini, A. Krajewski and A. Ravaglioli, J. Europ. Ceram. Soc. 18 (1998) 363–372.Google Scholar
  59. 59.
    A. P. N. Deoliveira, T. Manfredini, L. Barbieri, C. Leonelli, G. P. Pellacani, J. Amer. Ceram. Soc. 81 (1998) 777–780.Google Scholar
  60. 60.
    A. R. Boccaccini, J. Mater. Sci., 29 (1994) 4273–4278.Google Scholar
  61. 61.
    A. R. Boccaccini, P. A. Trusty and D. M. R. Taplin, Mater. Lett. 24 (1995) 199–205.Google Scholar
  62. 62.
    A. R. Boccaccini and R. Kramer, Glass Technology 36 (1995) 95–97.Google Scholar
  63. 63.
    A. R. Boccaccini, Microscopy and Analysis 57 Nr. 1 (1997) 19–20.Google Scholar
  64. 64.
    Idem., J. Mater. Sci. Lett. 12 (1993) 943–945.Google Scholar
  65. 65.
    A. R. Boccaccini, W. Stumpfe, D. M. R. Taplin and C. B. Ponton, Mat. Sci. Eng. A219 (1996) 26–31.Google Scholar
  66. 66.
    H. Schreiner and R. Tusche, Powder Metall. Int. 11 (1979) 52–56.Google Scholar
  67. 67.
    H. E. Exner and E. A. Giess, J. Mater. Res. 3 (1988) 122–125.Google Scholar
  68. 68.
    M. J. Hoffmann, A. Nagel, P. Greil and G. Petzow, J. Amer. Ceram. Soc. 72 (1989) 765–769.Google Scholar
  69. 69.
    A. R. Boccaccini, in Proceedings 4th ESG Conference, Fundamentals of Glass Science and Technology (The Glass Research Institute, Växjö, Sweden, 1997) pp. 356–363.Google Scholar
  70. 70.
    A. Cyunczyk, Powd. Metall. Int. 11 (1979) 162–164.Google Scholar
  71. 71.
    Y. Wanibe, N. Fujitsuna, T. Itoh and H. Yokohama, Powd. Metall. 32 (1989) 191–194.Google Scholar
  72. 72.
    R. Raman, R. M. German, Met. Mat. Trans. 26A (1995) 653–660.Google Scholar
  73. 73.
    Y. Mizuno, A. Kawasaki and R. Watanabe, Powd. Metall. 38 (1995) 191–195.Google Scholar
  74. 74.
    A. P. Bromley, G. Wood and R. Fletcher, Ceram. Bull. 77 (9) (1998) 58–62.Google Scholar
  75. 75.
    M. N. Rahaman and L. C. Dejonghe, J. Amer. Ceram. Soc. 70 (1987) C-348–C-351.Google Scholar
  76. 76.
    G. W. Scherer, Ceram. Bull. 70 (1991) 1059–1063.Google Scholar
  77. 77.
    A. R. Boccaccini, Adv. Comp. Lett. 4 (1995) 143–149.Google Scholar
  78. 78.
    S. Winkler, P. Davies, J. Janoschek, J. Thermal Analysis 40 (1993) 999–1008.Google Scholar
  79. 79.
    A. Jagota, K. R. Kikeska and R. K. Bordia, J. Amer. Ceram. Soc. 73 (1990) 2266–2273.Google Scholar
  80. 80.
    A. R. Boccaccini and E. A. Olevsky, Met. Mat. Trans. 28A(11) (1997) 2397–2404.Google Scholar
  81. 81.
    A. R. Boccaccini, J. Mater. Res. 13(6) (1998) 1693–1697.Google Scholar
  82. 82.
    T. Takamori and K. Iriyama, Ceram. Bull. 46 (1967) 1169–1173.Google Scholar
  83. 83.
    M. N. Rahaman, L. C. Dejonghe, S. L. Shinde and P. H. Tewari, J. Amer. Ceram. Soc. 71 (1988) C-338–C-341.Google Scholar
  84. 84.
    R. E. Dutton and M. N. Rahaman, ibid. 75 (1992) 2146–2154.Google Scholar
  85. 85.
    M. Y. Nazmy, Powder Metall. Int. 8 (1976) 19.Google Scholar
  86. 86.
    M. Borbe, A. BÜrger, E. Hornbogen and H. NÖcker, Materialpr¨ufung 36 (1994) 418–421.Google Scholar
  87. 87.
    Z. Chen, S.-F. Chen, R. A. Overferth and M. F. Rose, J. Mater. Res. 13 (1998) 2202–2205.Google Scholar
  88. 88.
    M. A. Nettleton and E. Raask, J. Appl. Chem. 17 (1967) 18–21.Google Scholar
  89. 89.
    E. Raask and R. Jessop, Phys. Chem. Glasses 7 (1966) 200–201.Google Scholar
  90. 90.
    C. K. Schoff, in “Modern Approaches to Wettability. Theory and Applications,” edited by M. E. Schrader and G. L. Loeb (Plenum Press, New York, 1992) p. 375.Google Scholar
  91. 91.
    W. F. Gale, J. W. Fergus, W. M. Ingram and M. Koopman, J. Mater. Sci. 32 (1997) 4931–4940.Google Scholar
  92. 92.
    K. Lellig, Untersuchung der Benetzung und Haftung bei Verbundwerkstoffen aus Gläsern und thermoplastischen Polymeren, Dissertation, Aachen University of Technology, Aachen, Germany, 1996.Google Scholar
  93. 93.
    E. Kuhn, B. Hamann and D. HÜlsenberg, Glas und temperaturbeständige, glaskristalline Erzeugnisse auf der Basis von recyceltem, verunreinigtem Flachglas. Final Report Nr. B403-96003. Technical University of Ilmenau, Ilmenau, Germany (1997).Google Scholar
  94. 94.
    Carbolite GmbH, Laboröfen, Trocken-und Brötschränke. Product Information, Carbolite GmbH (1998) p. 19.Google Scholar
  95. 95.
    S. Mäkipirtti, in “Powder Metallurgy,” edited by W. Leszynski (Interscience Publishers, New York, 1960) pp. 97–111.Google Scholar
  96. 96.
    M. Tikkanen, Planseeberichte f¨ur Pulvermetallurgie 11 (1963) 70–81.Google Scholar
  97. 97.
    G. A. Shoales and R. M. German, Met. Mat. Trans. 29A (1998) 1257–1263.Google Scholar
  98. 98.
    Y Mizuno, A. Kawasaki and R. Watanabe, Metall. Mat. Trans. 26B (1995) 75–79.Google Scholar
  99. 99.
    A. Siegmann, I. Raiter, M. Narkis and P. Eyerer, J. Mater. Sci. 21 (1986) 1180–1186.Google Scholar
  100. 100.
    C. T. Bellehumeur, M. K. Bisaria and J. Vlachopoulos, Polym. Eng. Sci. 36 (1996) 2198–2207.Google Scholar
  101. 101.
    L. Sarvaranta, J. App. Polym. Sci. 56 (1995) 1085–1091.Google Scholar
  102. 102.
    C. P. Ostertag, in “Science of Sintering,” edited by D. P. Uskokovic, H. Palmour III and R. M. Spriggs (Plenum Press, New York, 1989) pp. 453–459.Google Scholar
  103. 103.
    C. P. Ostertag, J. Amer. Ceram. Soc. 70 (1987) C-355–C-357.Google Scholar
  104. 104.
    P. Z. Cai, D. J. Green and G. L. Messing, ibid. 80 (1997) 1929–39.Google Scholar
  105. 105.
    T. Cheng and R. Raj, ibid. 71 (1988) 276–280.Google Scholar
  106. 106.
    Idem., ibid. 72 (1989) 1649–1655.Google Scholar
  107. 107.
    G.-Q. Lu, R. C. Sutterlin and T. K. Gupta, ibid. 76 (1993) 1907–14.Google Scholar
  108. 108.
    J. Bang and G.-Q. Lu, J. Mater. Res. 10 (1995) 1321–1326.Google Scholar
  109. 109.
    J.-H. Jean and C.-R. Chang and Z.-C. Chen, J. Amer. Ceram. Soc. 80 (1997) 2401–2406.Google Scholar
  110. 110.
    J.-H. Jean and C.-R. Chang, ibid. 80 (1997) 3084–92.Google Scholar
  111. 111.
    T. J. Garino and H. K. Bowen, ibid. 73 (1990) 251–257.Google Scholar
  112. 112.
    J. N. Calata, A. Matthys and G.-Q. Lu, J. Mater. Res. 13 (1998) 2334–2341.Google Scholar
  113. 113.
    F. Raether and G. MÜller, in “Fourth Euroceramics,” Vol. 2, edited by C. Galassi (Faenza Editrice, 1995) pp. 103–112.Google Scholar
  114. 114.
    B. J. Carroll, in “Contact Angle,Wettability and Adhesion,” edited by K. L. Mittal (VSP, Utrecht, The Netherlands, 1993) pp. 235–246.Google Scholar
  115. 115.
    F. Boury and J.-E. Proust, ibid. (1993) pp. 585–595.Google Scholar
  116. 116.
    V. K. Nagesh, A. P. Tomsia and J. A. Pask, J. Mater. Sci. 18 (1983) 2173–2180.Google Scholar
  117. 117.
    H. J. Oel, Ber. Dtsch. Keram. Ges. 38 (1961) 258–267.Google Scholar
  118. 118.
    H.-N. Ho, S.-T. Wu, Mat. Sci. Eng. A248 (1998) 120–124.Google Scholar
  119. 119.
    S. W. Ip, R. Sridhar, J. M. Toguri, T. F. Stephenson, A. E. M. Warner, ibid. A244 (1998) 31–38.Google Scholar
  120. 120.
    A. Feng, B. J. Mccoy, Z. A. Munir, D. Cagliostro, ibid. A242 (1998) 50–56.Google Scholar
  121. 121.
    E. Saiz and A. P. Tomsia, J. Amer. Ceram. Soc. 81 (1998) 2381–2393.Google Scholar
  122. 122.
    K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mat. Sci. Eng. A254 (1998) 99–111.Google Scholar
  123. 123.
    J. C. Bacri, R. Perzynski, D. Salin, F. Brochard-Wyart, J. M. Di Meglio, D. Quere, in “Hydrodynamics of Dispersed Media,” edited by J. P. Hulin, A. M. Cazabat, E. Guyon and F. Carmona (North Holland, Amsterdam, 1990) pp. 63–68.Google Scholar
  124. 124.
    W. D. Kingery, J. Amer. Ceram. Soc. 42 (1959) 6–10.Google Scholar
  125. 125.
    P. Nikolopoulos and G. Ondracek, Z. Werkstofftechnik 13 (1982) 60–69.Google Scholar
  126. 126.
    C. A. Deckert and D. A. Peters, in “Adhesion Aspects of Polymeric Coatings,” edited by K. L. Mittal (Plenum Press, New York, 1983) pp. 469–480.Google Scholar
  127. 127.
    R. Nitsche, Zur Benetzung und Haftung von Verbundwerkstoffphasen und Metall-Keramik-Systemen. Dissertation, Aachen Technical University, Aachen, Germany (1994).Google Scholar
  128. 128.
    Thermal Technology, Reaction Monitoring Display System. Product Information, Thermal Technology, Inc. Santa Rosa, USA.Google Scholar
  129. 129.
    B. Hamann and W. Gruner,Vorrichtung zur Untersuchung thermischerVorgänge anWerkstoffproben. Patentanmeldung (Germany) DE 198 15 827.0. 9.4.98.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Institut für WerkstofftechnikTechnische Universität IlmenauIlmenauGermany

Personalised recommendations