Advertisement

Journal of Materials Science

, Volume 33, Issue 15, pp 3743–3762 | Cite as

Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials

  • Z. G. Wei
  • R. Sandstroröm
  • S. Miyazaki
Article

Abstract

A review is presented of the current research and development of shape-memory materials, including shape-memory alloys, shape-memory ceramics and shape-memory polymers. The shape-memory materials exhibit some novel performances, such as sensoring (thermal, stress or field), large-stroke actuation, high damping, adaptive responses, shape memory and superelasticity capability, which can be utilized in various engineering approaches to smart systems. Based on an extensive literature survey, the various shape-memory materials are outlined, with special attention to the recently developed or emerged materials. The basic phenomena in the materials, that is, the stimulus-induced phase transformations which result in the unique performance and govern the remarkable changes in properties of the materials, are systematically lineated. The remaining technical barriers, and the challenges to improve the present materials system and develop a new shape memory materials are discussed.

Keywords

Phase Transformation Adaptive Response Shape Memory Extensive Literature Literature Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Gandhi and B. S. Thompson, “Smart Materials and Structures” (Chapman & Hall, New York, 1992).Google Scholar
  2. 2.
    T. Takagil, J. Intelligent Mater. System Struct. 1 (1990) 149.Google Scholar
  3. 3.
    Idem, in “Proceedings of the 3rd International Conference on Intelligent Materials”, edited by P. F. Gobin and J. Tatibouet (Technomic, Lancaster, 1996) p. 2.Google Scholar
  4. 4.
    C. A. Jaeger and C. A. Rogers, in “Proceedings of the ARO Workshop on Smart Materials, Structures and Mathematical Issues”, edited by C. A. Rogers (ARO, Washington, 1988) p. 14.Google Scholar
  5. 5.
    S. Nozaki and K. Takahashi, in “Proceedings of the 2nd International Conference on Intelligent Materials”, edited by C. A. Rogers and G. G. Wallace (Technomic, Lancaster, 1994) p. 1230.Google Scholar
  6. 6.
    G. Beck and P. F. Gobin, in “Proceedings of the 1st International Conference on Intelligent Materials”, edited by T. Takagi, K. Takahashi, M. Aizawa and S. Miyata (Technomic, Lancaster, 1992) p. 9.Google Scholar
  7. 7.
    F. Mucklich and H. Janocha, Z. Metallkde 87 (1996) 357.Google Scholar
  8. 8.
    C. A. Rogers, J. Intelligent Mater. System Struct. 4 (1993) 4.Google Scholar
  9. 9.
    M. Shahinpoor, “Smart Structures and Materials 1996: Smart Materials Technologies and Biomimietics”, Vol. 2716 (SPIE, Bellingham, 1996) p. 238.Google Scholar
  10. 10.
    H. B. Strock, Am. Ceram. Soc. Bull. 75 (4) (1996) 71.Google Scholar
  11. 11.
    W. B. Spillman Jr., J. S. Sirkis and P. T. Gardiner, Smart Mater. Struct. 5 (1996) 247.Google Scholar
  12. 12.
    W. J. Buehler, J. V. Gilfrich and K. C. Weiley, J. Appl. Phys. 34 (1963) 1467.Google Scholar
  13. 13.
    S. Miyazaki and K. Otsuka, ISIJ Int. 29 (1989) 353.Google Scholar
  14. 14.
    H. Funakubo (ed.), 'Shape Memory Alloys” (Gordon and Breach Science, New York, 1984).Google Scholar
  15. 15.
    T. W. Duerig, K. N. Melton, D. StÖckel and C. M. Wayman (eds), “Engineering Aspects of Shape Memory Alloys”, (Butterworth-Heinemann, London, 1990).Google Scholar
  16. 16.
    Y. Chu and H. Tu(eds), “Shape Memory Materials' 94” (International Academic, Beijing, 1994).Google Scholar
  17. 17.
    A. R. Pelton, D. Hodgson and T. Duerig (eds), “Shape Memory and Superelastic Technologies” (SMST, Pacific Grove, CA, 1994, 1997).Google Scholar
  18. 18.
    For example, “Proceedings of International Conference on Martensitic Transformations”, (Switzerland, 1995), (USA, 1992), (Australia, 1989), (Japan, 1986), etc..Google Scholar
  19. 19.
    C. M. Wayman, Progr. Mater. Sci. 36 (1992) 203.Google Scholar
  20. 20.
    C. M. Jackson, H. J. Wagner and R. J. Wasilewski, “55-Nitinol—The Alloy With a Memory: Its Physical Metallurgy, Properties, and Applications: A Report” (NASA Washington, 1972).Google Scholar
  21. 21.
    D. E. Hodgson, M. H. Wu and R. J. Biermann, “Shape Memory alloys” (Shape Memory Applications, Inc., Santa Clara, 1995).Google Scholar
  22. 22.
    T. W. Duerig and A. R. Pelton, “Materials Properties Handbook: Titanium Alloys” (ASM, Metals Park, 1994) p. 1035.Google Scholar
  23. 23.
    R. Stalmans and J. Van humbeeck, “Shape Memory Alloys: Functional and Smart” (Katholieke Universiteit Leuven, Leuven, 1996).Google Scholar
  24. 24.
    T. H. Nam, T. Saburi and K. Shimizu, Mater. Trans. JIM 32 (1990) 959.Google Scholar
  25. 25.
    T. H. Nam, T. Saburi, Y. Nakata and K. Shimizu, ibid. 31 (1990) 1050.Google Scholar
  26. 26.
    K. Otsuka, in “Shape Memory Materials' 94”, edited by Y. Chu and H. Tu, (International Academic, Beijing, 1994) p. 129.Google Scholar
  27. 27.
    W. J. Moberly and K. N. Melton, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 46.Google Scholar
  28. 28.
    K. N. Melton, ibid., p. 21.Google Scholar
  29. 29.
    T. W. Duerig, K. N. Melton and J. L. Proft, ibid., p. 130.Google Scholar
  30. 30.
    M. Piao, S. Miyazaki, K. Otsuka and N. Nishida, Mater. Trans. JIM 3 3 (1992) 337.Google Scholar
  31. 31.
    Idem, ibid. 33 (1992) 346.Google Scholar
  32. 32.
    C. S. Zhang, L. C. Zhao, T. W. Duerig and C. M. Wayman, Scripta Metall. Mater. 24 (1990) 1807.Google Scholar
  33. 33.
    P. G. Lindquist and C. M. Wayman, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 58.Google Scholar
  34. 34.
    J. Beyers and J. H. Mulder, Mater. Res. Soc. Symp. Proc. 360 (1995) 443.Google Scholar
  35. 35.
    S. M. Russell and F. Sczerzenie, ibid., p. 455.Google Scholar
  36. 36.
    S. M. Tuominen, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig, (SMST, Fremont, 1994) p. 49.Google Scholar
  37. 37.
    J. H. Mulder, J. Beyer, P. Donner and J. Peter-seim, ibid., p. 55.Google Scholar
  38. 38.
    S. K. Wu and Y. C. Lo, Mater. Sci. Forum 5668 (1990) 619.Google Scholar
  39. 39.
    M. H. Wu, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 69.Google Scholar
  40. 40.
    D. Z. Yang and Z. G. Wei, in “Shape Memory Materials' 94”, edited by Y. Chu and H. Tu (International Academic, Beijing, 1994) p. 319.Google Scholar
  41. 41.
    D. P. Dunne and N. F. Kennon, Metals Forum 4 (1981) 176.Google Scholar
  42. 42.
    M. A. Morris, Acta Metall. Mater. 40 (1992) 1573.Google Scholar
  43. 43.
    Z. G. Wei, H. Y. Peng, W. Zou and D. Z. Yang, Metall. Mater. Trans. 28A (1997) 955.Google Scholar
  44. 44.
    K. Sugimoto, K. Kamei and M. Nakaniwa, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöcke and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 89.Google Scholar
  45. 45.
    J. Van humbeeck, in “Proceedings of the 3rd International Conference on Intelligent Materials”, edited by P. F. Gobin and J. Tatibouet (Technomic, Lancaster, 1996) p. 442.Google Scholar
  46. 46.
    S. Miyazaki, “Shape Memory Alloys”, (Springer, Vienna, New York, 1996) p. 69.Google Scholar
  47. 47.
    J. Van humbeeck and J. Cedestrom, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig, (SMST, Fremont, 1994) p. 1.Google Scholar
  48. 48.
    T. Maki, Mater. Sci. Forum 56–58 (1990) 156.Google Scholar
  49. 49.
    R. Kainuma, N. Ono and K. Ishida, Mater. Res. Soc. Symp. Proc. 360 (1995) 467.Google Scholar
  50. 50.
    E. P. George, C. T. Liu, J. A. Horton, C. J. Sparks, M. Kao, H. Kunsmana and T. King, Mater. Charact. 32 (1994) 139.Google Scholar
  51. 51.
    R. Kainuma, K. Ishida and T. Nishizawa, Metall. Trans. 23A (1992) 1447.Google Scholar
  52. 52.
    V. A. Chernenko and V. V. Kokorin, in “Proceedings of the International Conference on Martensitic Transformations' 92”, edited by C. M. Wayman and J. Perkins (Monterey Inst. of Advanced Studies, Monterey, 1993) p. 1205.Google Scholar
  53. 53.
    Y. N. Koval, G. S. Firstov, J. van Humbeeck, L. Delaey and W. Y. Jang, J. Phys. IV C8 (1995) 1103.Google Scholar
  54. 54.
    C. Y. Lei, J. S. Lee park, H. R. P. Inoue, C. M. Wayman, in “Proceedings of the International Conference on Martensitic Transformations' 92”, edited by C. M. Wayman and J. Perkins (Monterey Inst. of Advanced Studies, Monterey, 1993) p. 539.Google Scholar
  55. 55.
    J. S. Lee Park, C. Y. Lei, M. H. Wu, H. R. P. Inoue, C. M. Wayman, ibid., p. 533.Google Scholar
  56. 56.
    M. R. Ibarra, T. S. Chien and A. S. Pavlovic, J. Less-Common Metals 153 (1989) 233.Google Scholar
  57. 57.
    A. P. Jardine, J. S. Madsen and P. G. Mercado, Mater. Charact. 32 (1994) 169.Google Scholar
  58. 58.
    A. P. Jardine, Mater. Res. Soc. Symp. Proc. 276 (1992) 31.Google Scholar
  59. 59.
    A. D. Johnson, J. D. Busch, C. A. Ray and C. Sloan, ibid. 276 (1992) 151.Google Scholar
  60. 60.
    A. D. Johnson, J. D. Busch, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig, (SMST, Fremont, 1994) p. 299.Google Scholar
  61. 61.
    P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton and M. A. Northrup, J. Microelectromech. Systems 5 (1996) 270.Google Scholar
  62. 62.
    A. P. Jardine, Mater. Res. Soc. Symp. Proc. 246 (1992) 427.Google Scholar
  63. 63.
    Q. Su, T. Kim, Y. Zheng and M. Wuttig, “Smart Structures and Materials 1995: Smart Materials”, Vol. 2441 (SPIE, Bellingham, 1995) p. 179.Google Scholar
  64. 64.
    A. P. Jardine, Smart Mater. Struct. 3 (1994) 140.Google Scholar
  65. 65.
    H. Andoh, T. Minemura, I. Ikuta and Y. Kita, J. Jpn Inst. Metals 50 (1986) 430.Google Scholar
  66. 66.
    J. A. Walker, K. J. Gabriel and M. Mehregany, Sensors and Actuators A21-A23 (1990) 243.Google Scholar
  67. 67.
    J. D. Busch, A. D. Johnson, C. H. Lee and D. A. Stevenson, J. Appl. Phys. 68 (1990) 6224.Google Scholar
  68. 68.
    A. D. Johnson, J. Micromech Microeng. 1 (1991) 34.Google Scholar
  69. 69.
    K. Ikuta, in “Proceedings of the IEEE International Conference Robotics and Actuation”, (IEEE, Los Alamitos, 1990) p. 2156.Google Scholar
  70. 70.
    K. Ikuta, H. Fijita, M. Ikeda and S. Yamashita, in “Proceedings of the IEEE Micro-Electro-Mechanical Systems”, (IEEE, Napa Valley, 1990) p. 38.Google Scholar
  71. 71.
    K. Kuribayashi and M. Yoshitake, ibid., p. 217.Google Scholar
  72. 72.
    K. Kuribayashi, T. Taniguchi, M. Yositake and S. Ogawa, Mater. Res. Soc. Symp. Proc. 276 (1992) 167.Google Scholar
  73. 73.
    L. Chang, C. H. Simpson, D. S. Grummon, W. Pratt and R. LÖlÖee, ibid. 187 (1990) 137.Google Scholar
  74. 74.
    L. Chang and D. G. Grummon, Scripta Metall. 25 (1991) 2079.Google Scholar
  75. 75.
    Idem, Mater. Res. Soc. Symp. Proc. 246 (1992) 141.Google Scholar
  76. 76.
    B. Wallos, L. Chang and D. S. Grummon, ibid. 246 (1992) 349.Google Scholar
  77. 77.
    S. Miyazaki, A. Ishida and A. Takei, in “Proceedings of the International Symposium on Measurement and Control in Robotics”, (IEEE, Tsukuba, 1992) p. 495.Google Scholar
  78. 78.
    A. Ishida, A. Takei and S. Miyazaki, Thin Solid Films 2 28 (1993) 210.Google Scholar
  79. 79.
    S. Miyazaki, A. Ishida and A. Takei, in “Proceedings of the International Conference on Martensitic Transformations' 92”, edited by C. M. Wayman and J. Perkins, see Ref. 52, p. 893.Google Scholar
  80. 80.
    S. Miyazaki and A. Ishida, Mater. Trans. JIM 35 (1994) 14.Google Scholar
  81. 81.
    A. P. Jardine, H. Zhang and L. D. Wasielesky, Mater. Res. Soc. Symp. Proc. 187 (1990) 137.Google Scholar
  82. 82.
    A. P. Jardine and L. D. Wasielesky, ibid. 187 (1990) 181.Google Scholar
  83. 83.
    J. S. Madsen and A. P. Jardine, Scripta Metall. Mater. 30 (1994) 1189.Google Scholar
  84. 84.
    C. M. Su, Z. S. Hua and M. Wuttig, in “Proceedings of Damping of Multiphase Inorganic Materials Symposium” edited by R. B. Baghat (SM International Pub., New York, 1993) p. 165.Google Scholar
  85. 85.
    S. Z. Hua, C. M. Su and M. Wuttig, Mater. Res. Soc. Symp. Proc. 308 (1993) 33.Google Scholar
  86. 86.
    C. M. Su and M. Wuttig, J. Adhes. Sci. Technol. 8 (1994) 1.Google Scholar
  87. 87.
    Li Hou and D. S. Grummon, Scripta Metall. Mater. 33 (1995) 989.Google Scholar
  88. 88.
    D. S. Grummon and T. J. Pence, Mater. Res. Soc. Symp. Proc. 588 (1997) 331.Google Scholar
  89. 89.
    D. S. Grummon, Li Hou, Z. Zhao and T. J. Pence, J. Phys. I» C8 (1995) 665.Google Scholar
  90. 90.
    R. H. Wolf and A. H. Heuer, J. Microelectromech. Systems 4 (1995) 206.Google Scholar
  91. 91.
    S. Miyazaki and K. Nomura, in “Proceedings of the IEEE Micro Electro Mechanical Systems”, (IEEE, Oiso 1994) p. 176.Google Scholar
  92. 92.
    A. Ishida, A. Takei, M. Sato and S. Miyazaki, Thin Solid Films 2 81–282 (1996) 337.Google Scholar
  93. 93.
    K. Nomura and S. Miyazaki, “Smart Structures and Materials 1995: Smart Materials”, vol. 2441 (SPIE, Bellingham, 1995) p. 149.Google Scholar
  94. 94.
    A. Ishida, M. Sato, A. Takei and S. Miyazaki, Mater. Trans. JIM 36 (1995) 1349.Google Scholar
  95. 95.
    A. Ishida, M. Sato, A. Takei, K. Nomura and S. Miyazaki, Metall. Mater. Trans. 27A (1996) 3753.Google Scholar
  96. 96.
    S. Miyazaki, K. Nomura and Z. He, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 19.Google Scholar
  97. 97.
    Y. Nakata, T. Tadaki, H. Sakamoto, A. Tanaka and K. Shimizu, J. Phys. IV C8 (1995) 671.Google Scholar
  98. 98.
    S. Miyazaki, K. Nomura and A. Ishida, ibid. C8 (1995) 677.Google Scholar
  99. 99.
    Y. Kawamura, A. Gyobu, H. Horikawa and T. Saburit, ibid. C8 (1995) 683.Google Scholar
  100. 100.
    K. Nomura, S. Miyazaki and A. Ishida, ibid. C8 (1995) 695.Google Scholar
  101. 101.
    Li Hou, T. J. Pence and D. S. Grummon, Mater. Res. Soc. Symp. Proc. 360 (1995) 369.Google Scholar
  102. 102.
    T. Hashinaga, S. Miyazaki, T. Ueki and H. Hor-ikawa, J. Phys. IV C8 (1995) 689.Google Scholar
  103. 103.
    S. Miyazaki, T. Hoshinaga and K. Yumikura, “Smart Structures and Materials 1995: Smart Materials”, Vol. 2441 (SPIE, Bellingham, 1995) p. 156.Google Scholar
  104. 104.
    S. Miyazaki, T. Hashinaga and A. Ishida, Thin Solid Films 281–282 (1996) 364.Google Scholar
  105. 105.
    P. Krulevitch, P. B. Ramsey, D. M. Makowiecki, A. P. Lee, G. C. Johnson and M. A. Northrup, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 19.Google Scholar
  106. 106.
    L. Chang and D. S. Grummon, Philos. Mag. A, 76 (1997) 163.Google Scholar
  107. 107.
    Idem, Mater. Res. Soc. Symp. Proc. 311 (1993) 167.Google Scholar
  108. 108.
    E. Quandt, C. Halene, H. Holleck, K. Feit, M. Kohl, P. Schlomacher, A. Skokan and K. D. Skrobanek, Sensors and Actuators A53 (1996) 434.Google Scholar
  109. 109.
    A. D. Johnson, V. V. Martynov and E. J. Shahoian, “Smart Structures and Materials 1995: Smart Materials”, Vol. 2441 (SPIE, Bellingham, 1995) p. 165.Google Scholar
  110. 110.
    A. D. Johnson, V. V. Martynov and R. S. Minners, J. Phys. IV C8 (1995) 783.Google Scholar
  111. 111.
    K. Ikuta, H. Fujishiro, M. Hayashi and T. Mat-suura, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 13.Google Scholar
  112. 112.
    K. N. Melton, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 23.Google Scholar
  113. 113.
    W. Tang, PhD dissertation, Royal Institute of Technology (1996) p. 19.Google Scholar
  114. 114.
    S. Takabayashi, K. Tanino, S. Fukumoto, Y. Mimatsu, S. Yamashita and Y. Ichikawa, Jpn. J. Appl. Phys. 35 (1996) 200.Google Scholar
  115. 115.
    A. P. Jardine, Mater. Res. Soc. Symp. Proc. 360 (1995) 293.Google Scholar
  116. 116.
    J. Zhang and D. S. Grummon, Mater. Res. Soc. Symp. Proc. 588 (1997) 451.Google Scholar
  117. 117.
    M. Mertmann, E. Hornbogen and K. Escher, in “Shape Memory Materials' 94”, edited by Y. Chou and H. Tu (International Academic, Beijing, 1994) p. 556.Google Scholar
  118. 118.
    S. Miyazaki, to be published.Google Scholar
  119. 119.
    B. C. Muddle and R. M. Trail, in “Shape Memory Materials' 94, edited by Y. Chu and H. Tu (International Academic, Beijing, 1994) p. 689.Google Scholar
  120. 120.
    K. E. Schurch and K. H. G. Ashbee, Nature 2 66 (1977) 706.Google Scholar
  121. 121.
    A. Itoh, Y. Miwa and N. Iguchi, J. Jpn. Inst. Metals 52 (1988) 523.Google Scholar
  122. 122.
    Idem, ibid. 54 (1990) 117.Google Scholar
  123. 123.
    Y. Miwa, A. Itoh and M. Hirok, in “Proceedings of the 28th Japan Congress on Materials Research” (SMS of Japan, Kyoto, 1985) p. 189.Google Scholar
  124. 124.
    A. Itoh, Y. Miwa and N. Iguchi, in “Proceedings of the 31st Japan Congress on Materials Research”, (SMS of Japan, Kyoto, 1988) p. 117.Google Scholar
  125. 125.
    A. H. Heuer, M. Ruhle and D. B. Marshall, J. Am. Ceram. Soc. 73 (1990) 1084.Google Scholar
  126. 126.
    M. V. Swaint, Nature 322 (1986) 234.Google Scholar
  127. 127.
    B. Jiang, J. Tu, T. Y. Hsu, X. Qi, X. Zheng and J. Zhong, Mater. Res. Soc. Symp. Proc. 246 (1992) 213.Google Scholar
  128. 128.
    P. E. Reyes-Morel, J. S. Cherny and I. W. Chen, J. Am. Ceram. Soc. 71 (1988) 343.Google Scholar
  129. 129.
    Idem, ibid. 71 (1988) 648.Google Scholar
  130. 130.
    B. C. Muddle and G. R. Hugo, in “Proceedings of the International Conference on Martensitic Transformations' 92”, edited by C. M. Wayman and J. Perkins (See Ref. 52) p. 647.Google Scholar
  131. 131.
    W. M. Kriven, J. Phys. IV 5 (1995) C8–101.Google Scholar
  132. 132.
    Y. Yamada, Mater. Res. Soc. Symp. Proc. 246 (1992) 149.Google Scholar
  133. 133.
    S. Tsunekawa and Y. Uesu, Phys. Status Solidi A 5 0 (1978) 695.Google Scholar
  134. 134.
    J. Li and C. M. Wayman, Mater. Lett. 26 (1996) 1.Google Scholar
  135. 135.
    Y. Yamada and Y. Uesu, Solid State Commun. 81 (1992) 777.Google Scholar
  136. 136.
    S. Tsunekawa, M. Suezawa and H. Takei, Phys. Stat. Solid. (a), 40 (1997) 434.Google Scholar
  137. 137.
    I. G. Zakrevskii, V. V. Kokorin and A. D. Shev-Chenko, Fiz. Met. Metallor. 61 (1986) 412.Google Scholar
  138. 138.
    Y. N. Wang, H. M. Shen, M. Zhu, Y. N. Huang, Z. F. Zhang, Z. M. Liu and P. C. W. Fung, Mater. Res. Soc. Symp. Proc. 246 (1992) 207.Google Scholar
  139. 139.
    Y. N. Wang, H. M. Shen and M. Zhu, Phys. Lett. A 158 (1991) 413.Google Scholar
  140. 140.
    R. Tiwari and V. K. Wadhawan, Phase Trans. B35 (1991) 47.Google Scholar
  141. 141.
    H. M. Shen, S. Chen, Z. Yu, Y. N. Wang, Z. X. Zhao and P. Liu, J. Low Temp. Phys. 92 (1993) 181.Google Scholar
  142. 142.
    L. E. Cross, J. Intelligent Mater. Systems Struct. 6 (1995) 55.Google Scholar
  143. 143.
    V. K. Wadhawan, M. C. Kernion, T. Kimura and R. E. Newnham, Ferroelectrics 37 (1981) 575.Google Scholar
  144. 144.
    P. Yang and D. A. Payne, in “Proceedings of the Interna-tional Conference on Martensitic Transformations' 92”, edited by C. M. Wayman and J. Perkins, (See Ref. 52) p. 719.Google Scholar
  145. 145.
    P. Yang and D. A. Payne, J. Appl. Phys. 71 (1992) 1361.Google Scholar
  146. 146.
    K. Uchino, in “Proceedings of the MRS International Meeting on Advanced Materials”, edited by K. Otsuka and K. Shimizu, Vol. 9 (MRS, Pittsburgh, 1989) p. 489.Google Scholar
  147. 147.
    K. Ghandi and N. W. Hagood, AIAA J. 33 (1995) 2165.Google Scholar
  148. 148.
    K. Ghandi and N. W. Hagood, “Shape Memory Ce-ramic Actuation of Adaptive Structures”, Research Report, MIT (1995).Google Scholar
  149. 149.
    A. Furuta, K. Y. Oh and K. Uchino, in “Proceedings of the 1990 IEEE 7th International Symposium on Applications of Ferroelectrics”, (IEEE, New York, 1991) p. 528.Google Scholar
  150. 150.
    W. Y. Pan, C. Q. Dam, Q. M. Zhang and L. E. Cross, J. Appl. Phys. 66 (1989) 6014.Google Scholar
  151. 151.
    P. Roth and E. Gmelin, Ferroelectrics 126 (1992) 221.Google Scholar
  152. 152.
    N. V. Kasper, A. I. Akimov, L. A. Bliznyuk and I. O. Troyanchuk, Phys. Solid State 37 (1995) 680.Google Scholar
  153. 153.
    I. O. Troyanchuyk, A. I. Akimov, N. V. Kasper and V. V. Mikhailov, ibid. 36 (1994) 1736.Google Scholar
  154. 154.
    I. O. Troyanchuk, H. Szymczak and N. V. Kas-per, Phys. Status Solidi A 157 (1996) 159.Google Scholar
  155. 155.
    N. V. Kasper and I. O. Troyanchuk, J. Phys. Chem. Solids 5 7 (1996) 1601.Google Scholar
  156. 156.
    C. Liang, C. A. Rogers and E. Malafeew, “Smart Structures and Materials”, AD-Vol. 24/AMD-Vol. 123 (SME, New York, 1991) p. 97.Google Scholar
  157. 157.
    C. A. Rogers, in “US—Japan Workshop on Smart/Intelligent Materials and Systems”, edited by I. Ahmad, A. Crowson and C. A. Rogers, Technomic, Lancaster, 1990, p. 11.Google Scholar
  158. 158.
    C. Liang, C. A. Rogers and E. Malafeew, J. Intelli-gent Mater. Systems Struct. 8 (1997) 380.Google Scholar
  159. 159.
    R. F. Gordon, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 115.Google Scholar
  160. 160.
    R. F. Gordon, Mater. Technol. 8 (1993) 254.Google Scholar
  161. 161.
    B. K. Kim, S. Y. Lee and M. Xu, Polymer 37 (1996) 5781.Google Scholar
  162. 162.
    X. Luo, X. Zhang, M. Wang, D. Ma, M. Xu and F. Li, J. Appl. Polym. Sci. 64 (1997) 2433.Google Scholar
  163. 163.
    H. Tobushi, S. Hayashi and P. H. Lin, in “Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 109.Google Scholar
  164. 164.
    H. Tobushi, H. Hara, E. Yamada and S. Hayashi, Smart Mate. Struct. 5 (1996) 483.Google Scholar
  165. 165.
    H. Tobushi, H. Hara, E. Yamada and S. Hayashi, in “Proceedings of the 3rd International Conference on Intelligent Materials”, edited by P. F. Gobin and J. Tatibouet (Technomic, Lancaster, 1996) p. 418.Google Scholar
  166. 166.
    T. Takahashi, N. Hayashi and S. Hayashi, J. Appl. Polym. Sci. 60 (1996) 1061.Google Scholar
  167. 167.
    Y. Osada and B. Ross-murphy, Sci. Am. 268 (1993) 82.Google Scholar
  168. 168.
    Y. Li and T. Tanaka, Ann. Rev. Mater. Sci. 22 (1992) 243.Google Scholar
  169. 169.
    M. Shibayama and T. Tanaka, Adv. Polym. Sci. 109 (1993) 1.Google Scholar
  170. 170.
    Y. Osada, Y. Ueoka and J. P. Gong, in “Proceedings of the 3rd International Conference on Intelligent Materials”, edited by P. F. Gobin and J. Tatibouet (Technomic, Lancaster, 1996) p. 344.Google Scholar
  171. 171.
    Z. J. Zhang and B. Z. Jang, “Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technology”, Vol. 2447 (SPIE, Bellingham, 1995) p. 26.Google Scholar
  172. 172.
    Z. Hu, Y. Li, X. Zhang and Y. Chen, “Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics”, Vol. 2716 (SPIE, Bellingham, 1996) 224.Google Scholar
  173. 173.
    H. Ichijo, R. Kishi, E. One, T. Sekiya, O. Hirasa, O. Oogane, K. Sahara, M. Oowada and E. Kokufata, in “Proceedings of the 1st International Conference on Intelligent Materials”, edited by T. Takagi, K. Takahashi, M. Aizawa and S. Miyata (Technomic, Lancaster, 1992) p. 306.Google Scholar
  174. 174.
    K. Otsuka, in “Engineering Aspects of Shape Memory Alloys”, edited by T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman (Butterworth-Heinemann, London, 1990) p. 36.Google Scholar
  175. 175.
    R. E. Newnham, MRS Bull. (1997) 20.Google Scholar
  176. 176.
    A. E. Clark, in “Ferromagnetic Materials 1”, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1980) p. 531.Google Scholar
  177. 177.
    H. Chen and H. Kubo, Curr. Opinion Solid State Mater. Sci. 1 (1996) 349.Google Scholar
  178. 178.
    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagoshi and M. Date, Mater. Trans. JIM 34 (1993) 423.Google Scholar
  179. 179.
    K. Otsuka and K. Shimizu, Int. Metals Rev. 31 (1986) 93.Google Scholar
  180. 180.
    K. Shimizu and T. Kakeshita, ISIJ Int. 29 (1989) 97.Google Scholar
  181. 181.
    J. R. Patel and M. Cohen, Acta Metall. 1 (1953) 531.Google Scholar
  182. 182.
    M. Fremond, “Shape Memory Alloys” (Springer, Vienna, New York, 1996) p. 3.Google Scholar
  183. 183.
    K. Tanaka, J. Pressure Vessel Tech. 112 (1990) 158.Google Scholar
  184. 184.
    C. Liang and C. A. Rogers, J. Intelligent Mater. System Struct. 1 (1990) 223.Google Scholar
  185. 185.
    J. G. Boyd and D. C. Lagoudas, Int. J. Plasticity 12 (1996) 805.Google Scholar
  186. 186.
    Q. P. Sun and K. C. Hwang, J. Mech Phys. Solids 41 (1993) 1.Google Scholar
  187. 187.
    A. L. Roytburd, Mater. Res. Soc. Symp. Proc. 246 (1992) 91.Google Scholar
  188. 188.
    A. L. Roytburd and J. Slutsker, ibid. 360 (1995) 299.Google Scholar
  189. 189.
    M. B. Kruger and R. Jeanloz, Science 249 (1990) 647.Google Scholar
  190. 190.
    S. M. Clark and A. G. Christy, Phys. Rev. B 51 (1995) 38.Google Scholar
  191. 191.
    H. Shankaran, S. K. Sikka and R. Chidambaram, High Press. Res. 4 (1990) 393.Google Scholar
  192. 192.
    T. Kakeshita and K. Shimizu, Mater. Trans. JIM 38 (1997) 668.Google Scholar
  193. 193.
    D. J. Erskine and W. J. Nellis, Nature 349 (1991) 317.Google Scholar
  194. 194.
    A. M. Thakur, N. N. Thadhani and R. B. Schwarz, Metall. Mater. Trans. 28A (1997) 1445.Google Scholar
  195. 195.
    A. Christou, Scripta Metall. 4 (1970) 437.Google Scholar
  196. 196.
    M. A. Meyers and J. R. C. Guimaraes, Mater. Sci. Eng. 24 (1976) 289.Google Scholar
  197. 197.
    V. A. Lobodiuk, Akad. Nauk Ukr. SSR Metallofiz. 76 (1979) 3.Google Scholar
  198. 198.
    T. Kakeshita and K. Shimizu, in “Proceedings of the International Conference on Martensitic Transformations' 86” (JIM, Nara, 1987) p. 230.Google Scholar
  199. 199.
    V. D. Sadovsky, L. V. Smirnov, Ye. Fokina, P. A. Malinen and I. P. Soroskin, Fiz. Met. Metallov. 24 (1967) 918.Google Scholar
  200. 200.
    E. Sun, D. Z. Yang and F. M. Yang, “Strong Magnetic Field-induced Martensitic Transformations”, Research Report, Dalian University of Technology (1988).Google Scholar
  201. 201.
    T. Kakeshita, K. Shimizu, M. Ono and M. Date, Mater. Trans. JIM 33 (1992) 461.Google Scholar
  202. 202.
    T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagishi and M. Date, ibid. 34 (1993) 415.Google Scholar
  203. 203.
    T. Kakeshita, T. Saburi and K. Kindo and S. Endo: Jpn. J. Appl. Phys. 36 (1997) 7083.Google Scholar
  204. 204.
    T. Kakeshita, K. Shimizu, T. Maki, I. Tamura, S. Kijima and M. Date, Scripta Metall. 19 (1985) 973.Google Scholar
  205. 205.
    R. D. James and D. Kinderlehrer, Philos. Mag. B 6 8 (1993) 237.Google Scholar
  206. 206.
    R. D. James and M. Wuttig, “Smart Structures and Materials 1996: Mathematics and Control in Smart Structures”, Vol. 2715 (SPIE, Bellingham, 1996) p. 420.Google Scholar
  207. 207.
    R. D. James and M. Wuttig, Philos. Mag. A, 77 (1998) 1273.Google Scholar
  208. 208.
    K. Ullakko, J. K. Huang, C. Kantner, R. C. O'handley and V. V. Kokorin, Appl. Phys. Lett 69 (1996) 1967.Google Scholar
  209. 209.
    K. Ullakko, J. K. Huang, V. V. Kokorin and R. C. O'handley, Scripta Mater. 36 (1997) 1133.Google Scholar
  210. 210.
    K. Ullakko, in “Proceedings of the 3rd International Conference on Intelligent Materials”, edited by P. F. Gobin and J. Tatibouet (Technomic, Lancaster, 1996) p. 505.Google Scholar
  211. 211.
    K. Ullakko, P. G. Yakovenko and V. G. Gavril-Juk, “Smart Structures and Materials 1996: Mathematics and Control in Smart Structures”, Vol. 2715 (SPIE, Bellingham, 1996) p. 42.Google Scholar
  212. 212.
    N. Braithwaite and G. Weaver, “Electronic Materials” (Materials in Action Series), (Alden Press, London, 1990) p. 175.Google Scholar
  213. 213.
    Z. G. Wei, R. SandstrÖm and S. Miyazaki, J. Mater. Sci. 33 (1998) 0000Google Scholar
  214. 214.
    S. A. Shabalovskaya, V. I. Itin and V. E. Gyun-Ter, in “Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies, edited by A. R. Pelton, D. Hodgson and T. Duerig (SMST, Fremon, 1994) p. 7.Google Scholar
  215. 215.
    V. I. Itin, V. E. Gyunter, S. A. Shabalovskaya and R. L. C. Sachdeva, Mater. Charac. 32 (1994) 179.Google Scholar
  216. 216.
    D. C. Jiles, in “New Materials and Their Application 1990”, edited by D. Holland (IOP Publishing, London, 1990) p. 365.Google Scholar
  217. 217.
    A. E. Clark, in “Proceedings of the Conference on Recent Advances in Adaptive and Sensory Materials and their Applications”, edited by C. A. Rogers and R. C. Rogers (Technomic, Lancaster, 1992) p. 387.Google Scholar
  218. 218.
    Idem, Mater. Res. Soc. Symp. Proc. 360 (1995) 171.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Z. G. Wei
    • 1
  • R. Sandstroröm
    • 1
  • S. Miyazaki
    • 2
  1. 1.Department of Materials Science and Engineering,Royal Institute of Technology,Stockholm,Sweden
  2. 2.Institute of Materials Science,University of Tsukuba, Tsukuba,IbarakiJapan

Personalised recommendations