Journal of Low Temperature Physics

, Volume 118, Issue 3–4, pp 153–165 | Cite as

Liquid Helium and Liquid Neon-Sensitive, Low Background Scintillation Media for the Detection of Low Energy Neutrinos

  • D. N. McKinsey
  • J. M. Doyle


The use of liquid helium and neon as scintillators for neutrino detection is investigated. Several unique properties of these cryogens make them promising candidates for real-time solar neutrino spectroscopy: large ultraviolet scintillation yields from ionizing radiation, transparency to their own scintillation light, and low levels of radioactive impurities. When neutrinos scatter from electrons in liquid helium or neon, ultraviolet light is emitted. The ultraviolet scintillation light can be efficiently converted to the visible with wavelength shifting films. In this way the neutrino-electron scattering events can be detected by photomultiplier tubes at room temperature. We conclude that the solar neutrino flux from the p+p→e++d+νe reaction could be characterized and monitored versus time using a 10 ton mass of liquid helium or neon as a scintillation target.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Davis, D. S. Harmer, and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).Google Scholar
  2. 2.
    T. Bowles (for the SAGE Collaboration): Proceedings of the 4th International Solar Neutrino Conference, W. Hampel (ed.), Heidelberg, Germany (1997).Google Scholar
  3. 3.
    M. Cribier (for the GALLEX Collaboration), Nucl. Phys. B (Proc. Suppl.) 70, 284 (1999).Google Scholar
  4. 4.
    Y. Fukua et al., Phys. Rev. Lett. 77, 1683 (1996).Google Scholar
  5. 5.
    Kamiokande Collaboration: Phys. Rev. Lett. 77, 1683 (1996).Google Scholar
  6. 6.
    J. N. Bahcall, S. Basu, and M. H. Pinsonneault, Phys. Lett. B 433, 1 (1998).Google Scholar
  7. 7.
    R. E. Lanou, H. J. Maris, and G. M. Seidel, Phys. Rev. Lett. 58, 2498 (1987); S. R. Bandler, C. Enss, G. Goldhaber, R. E. Lanou, H. J. Maris, T. More, F. S. Porter, and G. M. Seidel, J. Low Temp. Phys. 93, 785 (1993).Google Scholar
  8. 8.
    A. de Bellefon for the HELLAZ collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 386 (1999).Google Scholar
  9. 9.
    C. Arpesella, C. Broggini, and C. Cattadori, Astroparticle Physics 4, 333 (1996).Google Scholar
  10. 10.
    R. S. Raghavan, Phys. Rev. Lett. 78, 3618 (1997).Google Scholar
  11. 11.
    J. N. Bahcall, Neutrino Astrophysics, Chap. 8, Cambridge University Press, Cambridge, UK (1989).Google Scholar
  12. 12.
    Gioacchino Ranucci and Borexino Collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 377 (1999).Google Scholar
  13. 13.
    M. Stockton, J. W. Keto, and W. A. Fitzsimmons, Phys. Rev. A 5, 372 (1972).Google Scholar
  14. 14.
    R. E. Packard, F. Reif, and C. M. Surko, Phys. Rev. Lett. 25, 1435 (1970).Google Scholar
  15. 15.
    C. M. Surko, R. E. Packard, G. J. Dick, and F. Reif, Phys. Rev. Lett. 24, 657 (1970).Google Scholar
  16. 16.
    H. A. Roberts and F. L. Hereford, Phys. Rev. A 7, 284 (1973).Google Scholar
  17. 17.
    S. Kubota, M. Hishida, M. Suzuki, and J. Ruan(Gen), Phys. Rev. B 20, 3486 (1979).Google Scholar
  18. 18.
    A. Hitachi, T. Takahashi, N. Nobutaka, K. Masuda, J. Kikuchi, and T. Doke, Phys. Rev. B 27, 5279 (1983).Google Scholar
  19. 19.
    K. Habicht, Ph.D. thesis, Technical University of Berlin, 1998 (unpublished).Google Scholar
  20. 20.
    J. S. Adams, Y. H. Kim, R. E. Lanou, H. J. Maris, and G. M. Seidel, J. Low Temp. Phys. 113, 1121 (1998).Google Scholar
  21. 21.
    J. M. Doyle and S. K. Lamoreaux, Europhys. Lett. 26, 253 (1994).Google Scholar
  22. 22.
    D. N. McKinsey, C. R. Brome, J. S. Butterworth, R. Golub, K. Habicht, P. R. Huffman, S. K. Lamoreaux, C. E. H. Mattoni, and J. M. Doyle, Nucl. Inst. and Meth. B 132, 351 (1997).Google Scholar
  23. 23.
    Carlo Mattoni, private communication. In addition to the long-time measurements described in Ref. 21, work in our laboratory has placed limits on the amount of blue light emitted by TPB after 20 ns.Google Scholar
  24. 24.
    T. Doke, K. Masuda, and E. Shibamura, Nucl. Inst. and Meth. A 291, 617 (1990).Google Scholar
  25. 25.
    D. N. McKinsey, C. R. Brome, J. S. Butterworth, S. N. Dzhosyuk, P. R. Huffman, C. E. H. Mattoni, J. M. Doyle, R. Golub, and K. Habicht, Phys. Rev. A 59, 200 (1999).Google Scholar
  26. 26.
    C. F. Chablowski, J. O. Jensen, D. R. Yarkony, and B. H. Lengsfield, III, J. Chem. Phys. 90, 2504 (1988).Google Scholar
  27. 27.
    B. Schneider and J. S. Cohen, J. Chem. Phys. 61, 3240 (1974).Google Scholar
  28. 28.
    T. Suemoto and H. Kanzaki, J. Phys. Soc. Jpn. 46, 1554 (1979).Google Scholar
  29. 29.
    The emissivity of organic substances can range from 0.1 to 0.9. See F. Pobell, Matter and Methods at Low Temperatures, Chap. 5, p. 84, Springer-Verlag, Berlin Heidelberg, Germany (1992).Google Scholar
  30. 30.
    I. M. Ward, Mechanical Properties of Solid Polymers, Chap. 12, Interscience, New York (1971).Google Scholar
  31. 31.
    J. Seguinot, T. Ypsilantis, and A. Zichichi, A Real Time Solar Neutrino Detector With Energy Determination, Fourth International Workshop on Neutrino Telescopes, p. 289 (1992).Google Scholar
  32. 32.
    F. T. Avignone, III, R. L. Brodzinski, J. C. Evans, Jr., W. K. Hensley, H. S. Miley, and J. H. Reeves, Phys. Rev. C 34, 666 (1986).Google Scholar
  33. 33.
    Alimonti et al., Nucl. Inst. and Meth. A 406, 411 (1998).Google Scholar
  34. 34.
    G. Jonkmans for the SNO collaboration, Nucl. Phys. B (Proc. Suppl.) 70, 329 (1999).Google Scholar
  35. 35.
    SNO internal report SNO-STR-93-042.Google Scholar
  36. 36.
    W. S. Dennis, E. Durbin, W. A. Fitzsimmons, O. Heybey, and G. K. Walters, Phys. Rev. Lett. 23, 1083 (1969).Google Scholar
  37. 37.
    C. J. Martoff, Science 237, 507 (1987).Google Scholar
  38. 38.
    B. Cabrera, L. M. Krauss, and F. Wilczek, Phys. Rev. Lett. 55, 25 (1985).Google Scholar
  39. 39.
    G. L. Cassiday, J. W. Keuffel, and J. A. Thompson, Phys. Rev. D 7, 2022 (1973).Google Scholar
  40. 40.
    A. Bertin, A. Vitale, and A. Placci, Phys. Rev. A 7, 2214 (1973).Google Scholar
  41. 41.
    J. N. Bahcall and P. I. Krastev, Phys. Rev. C 55, 929 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • D. N. McKinsey
    • 1
  • J. M. Doyle
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations