Journal of Materials Science

, Volume 33, Issue 14, pp 3529–3539 | Cite as

Micromechanics of rubber–toughened polymers

  • Xiao-Hong Chen
  • Yiu-Wing Mai

Abstract

A new micromechanical model is provided to account for the full interaction between rubber particles in toughened polymers. Three-dimensional large deformation elastic–plastic finite element analysis is carried out to obtain the local stress and strain fields and then a homogenization method is adopted to obtain the effective stress–strain relation. The dependence of the local stress and strain distributions and effective stress–strain relation on phase morphology and mechanical properties of rubber particles is examined under various transverse constraints. The profile for the effective yield surface is obtained at four different particle volume fractions. It is shown that stress triaxiality affects significantly the effective yield stress and the local stress concentrations. Rubber cavitation and matrix shear yielding are two coupled toughening mechanisms; which one occurs first depends on the properties of rubber particles and matrix and the imposed triaxiality. Rubber cavitation plays an important role in the toughening process under high tensile triaxial stresses. Axisymmetric modelling may underestimate, and two-dimensional plane-strain modelling may overestimate, the inter-particle interaction compared with three-dimensional modelling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Aboudi, “Mechanics of Composite Materials: A Unified Micromechanical Approach”, (Elsevier Science, Amsterdam, 1991) Chs 1–3.Google Scholar
  2. 2.
    P. Tong and C. C. Mei, Comput. Mech. 9 (1992) 195.Google Scholar
  3. 3.
    C. B. Bucknall, “Toughened Plastics”, (Applied Science, London, 1977).Google Scholar
  4. 4.
    A. C. Garg and Y.-W. Mai, Compos. Sci. Technol. 31 (1988) 179.Google Scholar
  5. 5.
    C. K. Riew and A. J. Kinloch, “Toughened Plastics I”, Advances in Chemistry Series 233 (American Chemical Society, Washington, DC, 1993).Google Scholar
  6. 6.
    A. J. Kinloch, S. J. Shaw and D. A. Tod, Polymer 24 (1983) 1341.Google Scholar
  7. 7.
    A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.Google Scholar
  8. 8.
    H. J. Sue and A. F. Yee, Polymer 29 (1988) 1619.Google Scholar
  9. 9.
    D. S. Parker, H. J. Sue, J. Huang and A. F. Yee, ibid. 31 (1990) 2267.Google Scholar
  10. 10.
    A. F. Yee, D. Li and X. Li, J. Mater. Sci. 28 (1993) 6392.Google Scholar
  11. 11.
    J. S. Wu and Y.-W. Mai, ibid. 28 (1993) 6167.Google Scholar
  12. 12.
    F. J. Guild and R. J. Young, ibid. 24 (1989) 2454.Google Scholar
  13. 13.
    Y. Huang and A. J. Kinloch, ibid. 27 (1992) 2753.Google Scholar
  14. 14.
    Idem., ibid. 27 (1992) 2763.Google Scholar
  15. 15.
    Idem., Polymer 33 (1992) 5338.Google Scholar
  16. 16.
    C. B. Bucknall, A. Karpodinis and X. C. Zhang, J. Mater. Sci. 29 (1994) 3377.Google Scholar
  17. 17.
    Y. S. Wu, J. S. Wu and Y.-W. Mai, in “Fatigue and Fracture Mechanics”, Vol. 28, ASTM STP 1321, edited by J. H. Underwood, B. D. MacDonald and M. R. Mitchell (American Society for Testing and Materials, Philadelphia, PA, 1997) p. 671.Google Scholar
  18. 18.
    Idem., in “Proceedings of the Materials Research 96”, Vol. 1, IMMA, 10–12 July 1996, Queensland, p. 153.Google Scholar
  19. 19.
    F. J. Guild and A. J. Kinloch, J. Mater. Sci. 30 (1995) 1689.Google Scholar
  20. 20.
    A. J. Kinloch and F. J. Guild, in “Toughened Plastics II”, edited by C. K. Riew and J. Kinloch, Advances in Chemistry Series 252 (American Chemical Society, Washington, DC, 1996) p. 1.Google Scholar
  21. 21.
    C. L. Hom and R. M. McMeeking, J. Appl. Mech. 56 (1989) 309.Google Scholar
  22. 22.
    H.-J. Sue and A. F. Yee, Polym. Eng. Sci. 36 (1996) 2320.Google Scholar
  23. 23.
    X.-H. Chen and P. Tong, unpublished research report (1995), Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong.Google Scholar
  24. 24.
    X.-H. Chen and Y.-W. Mai, Key Eng. Mater. 137 (1998) 115.Google Scholar
  25. 25.
    “ABAQUS/Standard User's Manual”, Version 5.5 (Hibbitt, Karlsson and Sorensen, RI, USA, 1995) Vol. I, Ch 4.Google Scholar
  26. 26.
    O. Ishai and L. J. Cohen, Int. J. Mech. Sci. 9 (1967) 539.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Xiao-Hong Chen
    • 1
  • Yiu-Wing Mai
    • 1
  1. 1.Centre for Advanced Materials Technology (CAMT), Department of Mechanical & Mechatronic Engineering J07,The University of Sydney,Australia

Personalised recommendations