Advertisement

Journal of Low Temperature Physics

, Volume 118, Issue 5–6, pp 543–553 | Cite as

Annular Long Josephson Junctions in a Magnetic Field: Engineering and Probing the Fluxon Interaction Potential

  • A. Wallraff
  • Yu. Koval
  • M. Levitchev
  • M. V. Fistul
  • A. V. Ustinov
Article

Abstract

The interaction of a Josephson fluxon with an externalmagnetic field-induced potential in a long Josephson junctionis investigated experimentally. The thermal activation of thefluxon from a potential well is observed and experimentsprobing its predicted quantum properties are discussed. Amethod for engineering a magnetic double-well potential for afluxon is proposed and the use of the coupled fluxon statesfor quantum computation is suggested.

Keywords

Magnetic Material Quantum Computation Thermal Activation Josephson Junction Quantum Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. V. Ustinov, Physica D 123, 315 (1998).Google Scholar
  2. 2.
    N. Grvønbech-Jensen, P. Lomdahl, and M. Samuelsen, Phys. Lett. A 154, 14 (1991).Google Scholar
  3. 3.
    A. V. Ustinov, B. A. Malorned, and N. Thyssen, Phys. Lett. A 233, 239 (1997).Google Scholar
  4. 4.
    M. V. Fistul, M. G. Castellano, M. Cirillo, G. Torrioli, A. Wallraff, and A. V. Ustinov, Physica B (in print).Google Scholar
  5. 5.
    S. Lloyd, Science 261, 1569 (1993)Google Scholar
  6. 6.
    D. P. DiVincenzo, Science 270, 255 (1995)Google Scholar
  7. 7.
    D. W. McLaughlin and A. C. Scott, Phys. Rev. A 18, 1652 (1978).Google Scholar
  8. 8.
    Y. S. Galpern and A. T. Filippov, Zh. Eksp. Teor. Fiz. 86, 1527 (1984).Google Scholar
  9. 9.
    B. A. Malomed and A. V. Ustinov, J. Appl. Phys. 67, 3791 (1990).Google Scholar
  10. 10.
    D. Munter et al., Phys. Rev B 58, 14518 (1998).Google Scholar
  11. 11.
    N. Martucciello and R. Monaco, Phys. Rev. B 53, 3471 (1996).Google Scholar
  12. 12.
    J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682, (1987).Google Scholar
  13. 13.
    H. Kramers, Physica 7, 284 (1940).Google Scholar
  14. 14.
    P. Hiinggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).Google Scholar
  15. 15.
    M. G. Castellano et al., Phys. Rev B 54, 15417 (1996).Google Scholar
  16. 16.
    A. Davidson et al., Phys. Rev. Lett. 55, 2059 (1985).Google Scholar
  17. 17.
    L. V. Vernik et al., J. Appl. Phys. 81, 1335 (1997).Google Scholar
  18. 18.
    T. Kato and M. Imada, J. Phys. Soc. Jpn. 65, 2963 (1996).Google Scholar
  19. 19.
    A. Shnirrnan, E. Ben-Jacob, and B. A. Malorned, Phys. Rev. B 56, 14677 (1997).Google Scholar
  20. 20.
    A. Caldeira and A. Leggett, Phys. Rev. Lett. 46, 211 (1981).Google Scholar
  21. 21.
    Yu. Koval, A. Wallraff, M. V. Fistul, N. Thyssen, H. Kohlstedt, and A. V. Ustinov, IEEE Trans. Appl. Supercond. 9, 3957 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • A. Wallraff
    • 1
  • Yu. Koval
    • 1
  • M. Levitchev
    • 2
  • M. V. Fistul
    • 1
  • A. V. Ustinov
    • 1
  1. 1.Physikalisches Institut IIIUniversität Erlangen-NürnbergErlangenGermany
  2. 2.ISI, Forschungszentrum Jülich GmbHGermany

Personalised recommendations