Journal of Optimization Theory and Applications

, Volume 106, Issue 3, pp 683–688 | Cite as

Fundamental Theorems of Morse Theory for Optimization on Manifolds with Corners

  • M. Shida


This note extends the fundamental theorems of Morse theory for stable stationary solutions to optimization problems on manifolds with corners.

stable stationary solutions fundamental theorems of Morse theory Morse inequalities manifold with corners 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MILNOR, J., Morse Theory, Annals of Mathematics Studies, Princeton University Press, Princeton, New Jersey, Vol. 51, 1963.Google Scholar
  2. 2.
    JONGEN, H. T., JONKER, P., and TWILT, F., Nonlinear Optimization in R n , I: Morse Theory, Chebychev Approximation, Peter Lang Verlag, Frankfurt, Germany, 1983.Google Scholar
  3. 3.
    GUDDAT, J., JONGEN, H. T., and RÜCKMANN, J., On Stability and Stationary Points in Nonlinear Optimization, Journal of Australian Mathematical Society, Vol. 28B, pp. 36-56, 1986.Google Scholar
  4. 4.
    AGRACHEV, A. A., and VAKHRAMEEV, S. A., Morse Theory and Optimal Control Problems, Nonlinear Synthesis, Sopron, Hungary, 1989; Progress in Systems Control Theory, Birkhäuser Boston, Boston, Massachusetts, Vol. 9, pp. 1-11, 1991.Google Scholar
  5. 5.
    KOJIMA, M., Strongly Stable Stationary Solutions in Nonlinear Programs, Analysis and Computation of Fixed Points, Edited by S. M. Robinson, Academic Press, New York, NY, pp. 93-138, 1980.Google Scholar
  6. 6.
    HIRABAYASHI, R., JONGEN, H. T., and SHIDA, M., Stability for Linearly Constrained Optimization Problems, Mathematical Programming, Vol. 66, pp. 351-360, 1994.Google Scholar
  7. 7.
    HIRSCH, M. W., Differential Topology, Graduate Texts in Mathematics, Springer Verlag, Berlin, Germany, Vol. 33, 1976.Google Scholar
  8. 8.
    PALAIS, R. S., and SMALE, S., A Generalized Morse Theory, Bulletin of the American Mathematical Society, Vol. 70, pp. 165-172, 1964.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • M. Shida
    • 1
  1. 1.Department of Mathematics and PhysicsNational Defense Academy, HashirimizuYokosukaJapan

Personalised recommendations