Plant and Soil

, Volume 217, Issue 1–2, pp 205–213 | Cite as

Pine root structure and its potential significance for root function

  • Carol A. Peterson
  • Daryl E. Enstone
  • Jeff H. Taylor
Article

Abstract

Actively growing roots of pouch-grown Pinus banksiana Lamb. are known to have three anatomically distinct zones, i.e., white, condensed tannin, and cork (in order of increasing distance from the root tip). Roots of pouch and pot-grown Pinus taeda L., and field-grown P. banksiana also develop these three zones. The terminal region of a dormant root resembles the condensed tannin zone, with the addition of a suberized metacutis partially surrounding the apical meristem. White roots are anatomically suited for efficient ion uptake due to the presence of a living cortex. The condensed tannin zones of both growing and dormant roots have a dead cortex but retain passage cells in their endodermal layers, through which some ion uptake could occur. The effect of the maturation from white to condensed tannin zone on water uptake is difficult to predict, but some uptake would occur through the endodermal passage cells. In the young cork zone, no ion and little water absorption should occur. The discrepancies between results of separate anatomical and physiological investigations of tree roots need to be resolved by correlative studies incorporating both approaches in individual experiments.

condensed tannins cork metacutis passage cells Pinus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addoms R M 1946 Entrance of water into suberized roots of trees. Plant Physiol. 21, 109–111.PubMedGoogle Scholar
  2. Baker DA 1971 Barriers to the radial diffusion of ions in maize roots. Planta 98, 285–293.CrossRefGoogle Scholar
  3. de Boer AH and Wegner LH 1997 Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48, 441–449.Google Scholar
  4. Brundrett M, Murase G and Kendrick B 1990 Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 68, 551–578.Google Scholar
  5. Clarkson D T 1996 Root structure and the sites of ion uptake. In Plant Roots-The Hidden Half. Eds Y Waisel, A Eshel and U Kafkafi. pp 483–510. Marcel Dekker, Inc. New York.Google Scholar
  6. Clarkson D T and Hanson J B 1986 Proton fluxes and the activity of a stelar proton pump in onion roots. J. Exp. Bot. 37, 1136–1150.Google Scholar
  7. Clarkson D T, Robards A W and Sanderson J 1971 The tertiary endodermis in barley roots: fine structure in relation to radial transport of ions and water. Planta 96, 292–305.CrossRefGoogle Scholar
  8. Clarkson D T, Williams L and Hanson J B 1984 Perfusion of onion root xylem vessels: a method and some evidence of control of the pH of the xylem sap. Planta 162, 361–369.CrossRefGoogle Scholar
  9. Comerford N B, Smethurst P J and Escamilla J A 1994 Nutrient uptake by woody root systems. New Zealand Journal of Forestry Science 24, 195–212.Google Scholar
  10. Enstone D E and Peterson C A 1998 Effects of exposure to humid air on epidermal vitality and suberin deposition in maize (Zea mays L.) roots. Plant Cell Environ. 21, 837–844.CrossRefGoogle Scholar
  11. Esau K 1977 Plant Anatomy, Second Edition. John Wiley & Sons, Inc., New York. pp 215–255.Google Scholar
  12. George, E and Marschner, H 1996 Nutrient and water uptake by roots of forest trees. Z. Pflanzenernähr. Bodenk. 159, 11–21.Google Scholar
  13. Haas D L and Carothers Z B 1975 Some ultrastructural observations on endodermal cell development in Zea mays roots. Amer. J. Bot. 62, 336–348.CrossRefGoogle Scholar
  14. Hay M J M, Dunlop J and Hopcroft D H 1986 Phosphate uptake and anatomy of unthickened and secondarily thickened adventitious roots of field-grown white clover (Trifolium repens L.). New Phytol. 103, 659–668.CrossRefGoogle Scholar
  15. Kramer P J and Bullock H C 1966 Seasonal variations in the proportions of suberized and unsuberized roots of trees in relation to the absorption of water. Amer. J. Bot. 53, 200–204.CrossRefGoogle Scholar
  16. Kuhn A J, Schröder W H and Bauch J 1999 Kinetics of Ca and Mg entry into mycorrhizal spruce roots. Planta. (In press).Google Scholar
  17. Läuchli A, Kramer D, Pitman M G and Lüttge U 1974 Ultrastructure of xylem parenchyma cells of barley roots in relation to ion transport to the xylem. Planta 119, 85–99.CrossRefGoogle Scholar
  18. Läuchli A, Spurr A R and Epstein, E 1971 Lateral transport of ions into the xylem of corn roots. II. Evaluation of a stelar pump. Plant Physiol. 48, 118–124.PubMedCrossRefGoogle Scholar
  19. Leshem B 1970 Resting roots of Pinus halepensis: structure, function and reaction to water stress. Bot. Gaz. 131, 99–104.CrossRefGoogle Scholar
  20. MacFall J S, Johnson G A and Kramer P J 1991 Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus taeda L.). New Phytol. 119, 551–560.CrossRefGoogle Scholar
  21. Mager H 1913 Versuche über die Metakutisierung. Flora 106, 42.Google Scholar
  22. Maurel C 1997 Aquaporins and water permeability of plant membranes. Ann. Rev. Plant Phys. Plant Mol. Bio. 48, 399–429.CrossRefGoogle Scholar
  23. McCrady R L and Comerford N B 1998 Morphological and anatomical relationships of loblolly pine fine roots. Trees 12, 431–437.CrossRefGoogle Scholar
  24. McKenzie B E and Peterson C A 1995a Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 1. Anatomy and permeability of the white and tannin zones. Bot. Acta 108, 127–137.Google Scholar
  25. McKenzie B E and Peterson C A 1995b Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 2. Anatomy and permeability of the cork zone. Bot. Acta 108, 138–143.Google Scholar
  26. Mirov N T 1967 The Genus Pinus. The Ronald Press Company, New York. pp 363–369.Google Scholar
  27. Müller H 1906 Ñber dieMetakutisierung derWurzelspitze und über die verkorkten Scheiden in den Achsen der Monokotyledone. Bot. Zeit. 64, 53–84.Google Scholar
  28. Nagahashi G, Thomson WW and Leonard R T 1974 The Casparian strip as a barrier to the movement of lanthanum in corn roots. Science 183: 670–671.PubMedGoogle Scholar
  29. Nissen P 1996 Uptake mechanisms. In Plant Roots-The Hidden Half. Eds Y Waisel, A Eshel and U Kafkafi. pp 4511–4527. Marcel Dekker, Inc., New York.Google Scholar
  30. Peterson C A and Moon G J 1993 The effect of lateral root outgrowth on the structure and permeability of the onion root exodermis. Bot. Acta 106, 411–418.Google Scholar
  31. Peterson C A and Steudle E 1993 Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L. roots. Planta 189, 288–297.CrossRefGoogle Scholar
  32. Peterson C A and Enstone D E 1996 Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97, 592–598.CrossRefGoogle Scholar
  33. Peterson C A, Murrmann M and Steudle E 1993 Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190, 127–136.CrossRefGoogle Scholar
  34. Plaut M 1918 Ñber die Morphologischen und Mikroskopischen Merkmale der Periodizität der Wurzel sowie über die Verbreitung der Metakutisierung der Wurzelhäube im Pflanzenreich. Festscher. 100-jähr. Best kgl. Wurttemb. Landw. Hochschule. 129–151. Hohenheim.Google Scholar
  35. Reinhardt D H and Rost T L 1995 Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Enviro. Exp. Bot. 69, 1170–1178.Google Scholar
  36. Robards A W and Robb M E 1972 Uptake and binding of uranyl ions by barley roots. Science 178, 980–982.PubMedGoogle Scholar
  37. Schäffner A R 1998 Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204, 131–139.PubMedCrossRefGoogle Scholar
  38. Sitte P 1962 Zum Feinbau der Suberschichten im Flaschenkork. Protoplasma 54, 555–559.CrossRefGoogle Scholar
  39. Sougnez-Remy S, Waterkeyn L and Van Praag H J 1993 L'absorption-translocation spécifique d'éléments nutritifs en relation avec la structure anatomique des radicelles de hêtre (Fagus sylvatica) et d'épicéa (Picea abies). II. Observations relatives à la structure anatomique des radicelles. Belg. J. Bot. 126, 184–190.Google Scholar
  40. Steudle E and Peterson C A 1998 How does water get through roots? J. Exp. Bot. 49, 775–788.CrossRefGoogle Scholar
  41. Taylor J H and Peterson C A 1999 Morphometric analysis of root anatomy in Pinus banksiana Lamb. during a 3-month field study. Trees, submitted. Van Fleet D S 1961 Histochemistry and function of the endodermis. Bot. Rev. 27, 165–220.Google Scholar
  42. Van Praag H J, Sougnez-Remy S and Weissen F 1993 L'absorptiontranslocation spécifique d'éléments nutritifs en relation avec la structure anatomique des radicelles de hêtre (Fagus sylvatica) 213 et d'épicéa (Picea abies). I. Mesures de l'absorption spécifique. Belg. J. Bot. 126, 175–183.Google Scholar
  43. Van Rees K C J and Comerford N B 1990 The role of woody roots of slash pine seedlings in water and potassium absorption. Can. J. For. Res. 20, 1183–1191.CrossRefGoogle Scholar
  44. Warmbrodt R D 1985 Studies on the root of Zea mays L.-structure of the adventitious roots with respect to phloem unloading. Bot. Gaz. 146, 169–180.CrossRefGoogle Scholar
  45. Wilcox H 1954 Primary organization of active and dormant roots of noble fir, Abies procera. Amer. J. Bot. 41, 812–821.CrossRefGoogle Scholar
  46. Wilcox H 1964 Xylem in roots of Pinus resinosa Ait. in relation to heterorhizy and growth activity. In Formation of Wood in Forest Trees. Ed. M Zimmerman. pp 459–478. Academic Press, Inc., New York.Google Scholar
  47. Wilcox H 1968 Morphological studies of the root of red pine, Pinus resinosa. I. Growth characteristics and patterns of branching. Amer. J. Bot. 55, 247–254CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Carol A. Peterson
    • 1
  • Daryl E. Enstone
    • 1
  • Jeff H. Taylor
    • 1
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations