Plant and Soil

, Volume 213, Issue 1–2, pp 137–147 | Cite as

Investigations on pyrite oxidation in mine spoils of the Lusatian lignite mining district

  • G. Meyer
  • C. Waschkies
  • R. F. Hüttl


The impact of organic waste material and fly ash on microbial and chemical pyrite oxidation was investigated in a field experiment, as well as in column tests under laboratory conditions. For the field experiment, pyritic mine spoil was ameliorated with fly ash and treated either with mineral fertiliser, with sewage sludge or with compost. Independent of treatment, during the 18 months following application, the pyrite-S contents decreased steadily in the top spoil (0–30 cm depth). However, high variations of the pyrite-S content were observed. Compared to other pyrite oxidation studies, the pyrite content of the mine spoil at the experimental site was low. Therefore, a model spoil with a higher pyrite content, derived from Tertiary strata of the overburden sequence in the same open-cast mine, was used for the column experiments. For the first column experiment, the model spoil was mixed with fly ash and mineral fertiliser, reflecting the common reclamation practice in the Lusatian open-cast lignite mining district. Columns with this spoil were either inoculated with different cell numbers of autochthonous acidophilic bacteria, isolated from the model spoil, or with a commercial strain of Thiobacillus ferrooxidans. The ratio of sulphate-S to total S was used as a measure for the degree of pyrite oxidation. The ratio of sulphate-S to total S increased within 28 days of incubation. The increase was related to the inoculated cell numbers of bacteria, but independent of the origin of the bacteria. It can be stated, that autochthonous bacteria from the model spoil oxidised pyrite at a similar rate as did the commercial T. ferrooxidans strain. For the second column test, mineral fertiliser, sewage sludge or compost were applied to the model spoil. The columns were inoculated with autochthonous bacteria, isolated from the model spoil. Application of sewage sludge and compost seemed to promote the weathering of pyrite, as the ratio of sulphate-S to total S increased more rapidly in these treatments compared to control or mineral fertiliser application. Both experiments showed an increase of cell numbers of inoculated bacteria, independent of the ratio of sulphate-S to total S.

autochthonous acidophilic bacteria column experiments and field study fly ash mine spoil organic waste application Thiobacillus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backes C A, Pulford I D and Duncan H J 1993 Seasonal Variation of Pyrite Oxidation Rates in Colliery Spoil. Soil Use and Management 9(1), 30–34.Google Scholar
  2. Beck J V 1960 A Ferrous-Iron-Oxidizing Bacterium: I. Isolation and Some General Physiological Characteristics. J. Bacteriol. 79, 502–509.PubMedGoogle Scholar
  3. Canfield D E, Raiswell R, Westrich J T, Reaves C M and Berner R A 1986 The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology 54, 149–155.CrossRefGoogle Scholar
  4. Delschen T and Necker U 1995 Humusanreicherung in rekultivierten Lößböden. Agribiol. Res. 48, 2.Google Scholar
  5. Doolittle J J and Hossner L R 1986 Pyrite Oxidation in a Minespoil American Society of Agronomy, Madison Wisconsin. p 29.Google Scholar
  6. Evangelou V P 1995 Pyrite Oxidation and Its Control. CRC Press, Inc., Boca Raton, Florida, USA. 293 p.Google Scholar
  7. FAO 1994 Guidelines for Soil Description. 4th ed. FAO, Rom.Google Scholar
  8. Fritsche W 1990 Mikrobiologie. Gustav Fischer Verlag, Jena, Germany. 497 p.Google Scholar
  9. Gäbler H-E, Mieke B and Wisch W 1996 Bestimmung verschiedener Bindungsformen des Schwefels in Feststoffproben. In GBL-Richlinie Braunkohle, Germany. pp 1–7.Google Scholar
  10. Harrison A P Jr 1984 The Acidophilic Thiobacilli and Other Acidophilic Bacteria that Share Their Habitat. Ann. Rev. Microbiol. 38, 65–292.Google Scholar
  11. Hutchins S R, Davidson M S, Brierley J A and Brierley C L 1986 Microorganisms in Reclamation of Metals. Ann. Rev. Microbiol. 40, 311–336.CrossRefGoogle Scholar
  12. Jaynes D B, Rogowski A S and Pionke H B 1984 Acid Mine Drainage From Reclaimed Coal Strip Mines-1. Model Description. Water Resources Research 20, 233–242.CrossRefGoogle Scholar
  13. Katzur J 1998 Melioration schwefelhaltiger Kippböden. In Braunkohlentagebau und Rekultivierung-Landschaftsökologie-Folgenutzung-Naturschutz, 1998. Ed. Pflug W. pp 559–572. Springer-Verlag.Google Scholar
  14. Katzur J, Haubold-Rosar M, Schwabe and Bednarz 1992 Erarbeitung einer Forschungskonzeption für die ökologisch begründete Entwicklung von Bergbaufolgelandschaften in der Lausitz. End Report for the Federal Ministry of Education and Research, Bonn. Unpublished.Google Scholar
  15. Kerth M 1988 Pyritverwitterung im Steinkohlebergematerial und ihre umweltgeologischen Folgen. Ph. D.-thesis of the University Gesamthochschule Essen, Germany. Unpublished. 182 p.Google Scholar
  16. Kölling M 1990 Modellierung geochemischer Prozesse im Sickerwasser und Grundwasser, Beispiel: Die Pyritverwitterung und das Problem saurer Grubenwässer. In Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen, 8, Germany. 135 p.Google Scholar
  17. Kuenen J G and Tuovinen O H 1978 The Genera Thiobacillus and Thiomicrospira. In The Prokaryotes, Vol. I, 1981. Eds M P Starr, H Stolp, H G Trüper, A Balars and H G Schlegel. pp 1022–1036. Springer Verlag, Germany.Google Scholar
  18. Lange J and Brumsack H-J 1977 Total Sulphur Analysis in Geological and Biological Materials by Coulometric Titration Following Combustion. Z. Anal. Chem. 286, 361–366.CrossRefGoogle Scholar
  19. Loomis E C and Hood W C 1984 The effects of Anaerobically Digested Sludge on the Oxidation of Pyrite and the Formation of Acid Mine Drainage. In Proc. of Nat. Symp. on Surface Mine Hydrology, Sedimentology and Reclamation, University of Kentucky, Lexington, KY, p 1.Google Scholar
  20. Luther G W III, Kostka J E Church T M Sulzberger B and Stumm W 1992 Seasonal Iron Cycling in the Salt-marsh Sedimentary Environment: the Importance of Ligand Complexes with Fe(II) and Fe(III) in the Dissolution of Fe(III) Minerals and Pyrite, Respectively. Marine Chemistry 40, 81–103.CrossRefGoogle Scholar
  21. Nordstrom D K 1982 Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals. In Acid Sulfate Weathering. Eds J A Kittrick, D S Fanning and L R Hossner. pp 37–56. Soil Science Society of America, Madison Wisconsin.Google Scholar
  22. Pesic B, Oliver D J and Wichlacz P 1989 An Electrochemical Method of Measuring the Oxidation Rate of Ferrous to Ferric Iron With Oxygen in the Presence of Thiobacillus ferrooxidans. Biotechnology and Bioengineering 33, 28–439.CrossRefGoogle Scholar
  23. Pichtel J R, Dick W A and McCoy E L 1989 Binding of Iron from Pyritic Mine Spoil by Water-Soluble Organic Materials Extracted from Sewage Sludge. Soil Sci. 148(2), 140–148.CrossRefGoogle Scholar
  24. Prein A 1994 Sauerstoffzufuhr als limitierender Faktor für die Pyritverwitterung in Abraumkippen von Braunkohletagebauen. Ph.-D thesis of the University of Hanover. Unpublished. 126 p.Google Scholar
  25. Ritsema C J and Groenenberg E 1993 Pyrite Oxidation, Carbonate Weathering, and Gypsum Formation in a Drained Potential Acid Sulfate Soil. Journal of American Soil Sciences 57, 968–976.CrossRefGoogle Scholar
  26. Rucher F 1991 Geologische Verhältnisse sowie geochemisch/ mineralogische Veränderungen bei Braunkohlennebengesteinen im Bereich der Tagebaue Garzweiler I und II der Rheinbraun AG. Diplom-thesis of the Ruhr-University Bochum, Germany. Unpublished. 62 p.Google Scholar
  27. Sand W, Gehrke T, Hallmann R, Rohde K, Sobotke B and Wentzien S 1993 In situ Bioleaching of Metal Sulfides: The Importance of Leptospirillum ferrooxidans. In Biohydrometallurgical Technologies. Eds A E Torma, J E Wey and V L Lakshmanan. pp 15–27. The Minerals, Metals and Materials Society. TMS, Warrendale, PA, USA.Google Scholar
  28. Schippers A, Hallmann R, Wentzien S and Sand W 1995 Microbial Diversity in Uranium Mine Waste Heaps. Appl. Environ. Microbiol. 61(8), 2930–2935.PubMedGoogle Scholar
  29. Schippers A, Josza P-G and Sand W 1996a Sulfur Chemistry in Bacterial Leaching of Pyrite. Appl. Environ. Microbiol. 62, 3424–3431.PubMedGoogle Scholar
  30. Schippers A, Von Rège H and Sand W 1996b Impact of Microbial Diversity and Sulfur Chemistry on Safeguarding Sulfidic Mine Waste. Minerals Engineering 9(10), 1069–1079.CrossRefGoogle Scholar
  31. Schlegel H G 1992 Allgemeine Mikrobiologie, 7. überarbeitete Auflage. Thieme-Verlag Stuttgart, Germany. 634 p.Google Scholar
  32. Schnaitman C A, Korczynski M S and Lundgren D G 1969 Kinetic Studies of Iron Oxidation by Whole Cells of Ferrobacillus ferrooxidans J. Bacteriol. 99, 552–557.PubMedGoogle Scholar
  33. Schnitzer M 1986 Binding of Humic Substances by Soil Minerals Colloids. In Interactions of Soil Minerals with Natural Organics and Microbes. Eds P M Huang and M Schnitzer. pp 77–101. Soil Sci. Soc. Am. Spec. Publ. No. 17. Madison, Wisconsin, USA.Google Scholar
  34. Silverman M P and Lundgren D G 1959 Studies on the Chemoautotrophic Iron Bacterium Ferrobacillus ferrooxidans. J. Bacteriol. 77, 642–647.PubMedCrossRefGoogle Scholar
  35. Singer P C and Stumm W 1970 Acidic Mine Drainage. The Rate-Determining Step. Science 167, 1121–1123.PubMedGoogle Scholar
  36. Stumm W and Morgan J J 1981 Aquatic Chemistry. Wiley & Sons, New York, USA. 780 p.Google Scholar
  37. Torma A E 1987 Impact of Biotechnology on Metal Extractions. Mineral Processing and Extractive Metallurgy Review 2, 289–330.Google Scholar
  38. Thum J, Wünsche M, Laves D and Vogler E 1990 Zur Humusbildung auf Kippboden bei Ackernutzung. Arch. Acker-Pflanzenbau-Bodenkunde 34, 855–864.Google Scholar
  39. Trolldenier G 1993 Bestimmung physiologischer Gruppen nach der MPN-Methode. In Bodenbiologische Arbeitsmethoden, 2. Au-flage. Eds F Schinner, R Öhlinger, E Kandeler and R Margesin. pp 32–35. Springer Labor, Berlin, Heidelberg, Germany.Google Scholar
  40. Tuovinen O H and Kelly D P 1972 Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für allgemeine Mikrobiologie 12, 311–346.PubMedGoogle Scholar
  41. Tuttle J H and Dugan P R 1976 Inhibition of Growth, Iron, and Sulfur Oxidation in Thiobacillus ferrooxidans by Simple Organic Compounds. Can. J. Microbiol. 22, 719–730.PubMedCrossRefGoogle Scholar
  42. Vetterlein D, Waschkies C and Weber E 1999 Nutrient Availability in the Initial Stages of Surface Mine Spoil Reclamation-Impact on Plant Growth. J. Plant Nutr. and Soil Sci. (In press).Google Scholar
  43. Vuorinen A and Tuovinen O H 1987 Analysis of Soluble Iron Compounds in the Bacterial Oxidation of Pyrite. Journal of Fermentation Technology 65 (1), 37–42.CrossRefGoogle Scholar
  44. Wilden R, Schaaf Wand Hüttl R F 1997 Raumzeitliche Entwicklungen des Bodenlösungschemismus in Kippböden des Lausitzer Braunkohlereviers. DBG-Mittl. 85 (1), 401–405.Google Scholar
  45. Wisotzky F 1994 Untersuchungen zur Pyritoxidation in Sedimenten des Rheinischen Braunkohlenreviers und deren Auswirkungen auf die Chemie des Grundwassers. In Besondere Mitteilungen zum Deutschen Gewässerkundlichen Jahrbuch, 58. Eds Landesumweltamt Nordrhein-Westfalen in Essen, Germany. 153 p.Google Scholar
  46. Younger P L, Curtis T P, Jarvis A and Pennell R 1997 Effective Passive Treatment of Aluminium-Rich, Acidic Colliery Spoil Drainage Using a Compost Wetland at Quaking Houses, County Durham. Journal of Chartered Institution of Water and Environmental Management 11(9), 200–208.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • G. Meyer
  • C. Waschkies
  • R. F. Hüttl

There are no affiliations available

Personalised recommendations