Advertisement

Journal of Low Temperature Physics

, Volume 118, Issue 5–6, pp 805–816 | Cite as

Andreev Spectroscopy for Superconducting Phase Qubits

  • Mikhail V. Feigel'man
  • Lev. B. Ioffe
  • Vadim B. Geshkenbein
  • Gianni Blatter
Article

Abstract

We propose a new method to measure the coherence time ofsuperconducting phase qubits based on the analysis of themagnetic-field dependent dc nonlinear Andreev current across ahigh-resistance tunnel contact between the qubit and a dirtymetal wire and derive a quantitative relation between thesubgap I–V characteristic and the internal correlationfunction of the qubit.

Keywords

Spectroscopy Coherence Magnetic Material Quantitative Relation Versus Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Shor, Los Alamitos Conference Proceedings, 1994.Google Scholar
  2. 2.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997).Google Scholar
  3. 3.
    A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).Google Scholar
  4. 4.
    L.B. Ioffe, et al., Nature 398, 679 (1999).Google Scholar
  5. 5.
    J.E. Mooij, et al., Science 285, 1036 (1999); cond-matj9908283.Google Scholar
  6. 6.
    G. Blatter, V.B. Geshkenbein, and L.B. Ioffe, to be published. Google Scholar
  7. 7.
    Yu.V. Nazarov and F.W.J. Hekking, Phys. Rev. Lett. 71, 1625 (1993).Google Scholar
  8. 8.
    H. Pothier et al., Phys. Rev. Lett. 73, 2488 (1994).Google Scholar
  9. 9.
    F.W.J. Hekking, L.I. Glazman, and G. Schon, Phys. Rev. B 51, 15312 (1995).Google Scholar
  10. 10.
    D.A. Ivanov and M.V. Feigel'man, JETP 87, 349 (1998).Google Scholar
  11. 11.
    A.V. Veretennikov et al., Proceedings of LT-22.Google Scholar
  12. 12.
    S. Chakravarty and A.J. Leggett, Phys. Rev. Lett. 52, 5 (1984).Google Scholar
  13. 13.
    A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).Google Scholar
  14. 14.
    U. Weiss, Quantum Dissipative Systems, World Scientific (1998).Google Scholar
  15. 15.
    F. Lesage and H. Saleur, Phys. Rev. Lett. 80, 4370 (1998).Google Scholar
  16. 16.
    Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nature 398, 786 (1999).Google Scholar
  17. 17.
    Y. Nakamura, C.D. Chen, and J.S. Tsai, Phys. Rev. Lett. 79, 2328 (1997).Google Scholar
  18. 18.
    K. Völker, Phys. Rev. B 58, 1862 (1998).Google Scholar
  19. 19.
    H. Pothier, S. Gueron, D. Esteve, and M.H. Devoret, Physica B 203, 226 (1994).Google Scholar
  20. 20.
    S. Gueron, PhD thesis, Saclay (1997).Google Scholar
  21. 21.
    M.V. Feigel'man, A.I. Larkin, and M.A. Skvortsov, cond-mat/9907358.Google Scholar
  22. 22.
    A. Huck, F.W.J. Hekking, and B. Kramer, Europhys. Lett. 41, 201 (1998).Google Scholar
  23. 23.
    M.E. Gershenzon, cond-mat/9908099, Localization-99 Proceedings.Google Scholar
  24. 24.
    M.V. Feigel'man and A.I. Larkin, Chern. Phys. 235, 107 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Mikhail V. Feigel'man
    • 1
  • Lev. B. Ioffe
    • 2
  • Vadim B. Geshkenbein
    • 3
  • Gianni Blatter
    • 3
  1. 1.L. D. Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Department of PhysicsRutgers UniversityPiscatawayUSA
  3. 3.Theoretische PhysikETH HönggerbergZürichSwitzerland

Personalised recommendations