Journal of Materials Science

, Volume 34, Issue 12, pp 2773–2779 | Cite as

The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode

  • Yanqin Wang
  • Yanzhong Hao
  • Humin Cheng
  • Jiming Ma
  • Bin Xu
  • Weihua Li
  • Shengmin Cai


Metal-ion-doped TiO2 nanoparticles were prepared with hydrothermal method. The change of photocurrents at different electrode potentials and wavelengths of incident light showed two different characteristics for various transition metal-ion-doped TiO2 electrodes. In Zn2+ and Cd2+-doped TiO2 electrodes, a characteristic of n-type semiconductor was observed and the incident photon to conversion efficiency (IPCE) were larger than that of pure TiO2 electrode at the thickness of electrode film of 0.5 μm when the content of doped metal ion was less than 0.5%. The effect of the thickness of films on IPCE was also investigated. The IPCE of pure TiO2 electrode was strongly dependent on the thickness of films. The change tendency of the IPCE for Zn2+-doped TiO2 (0.5% Zn2+) electrodes with its thickness was different from that of pure TiO2. In Fe3+, Co2+, Ni2+, Cr3+ and V5+-doped TiO2 electrodes, a phenomenon of p-n conversion was observed. The difference of photoresponse and the value of photocurrents are dependent on the doping method and concentration of the doped metal ions. The maximum conversion efficiency of RuL2(SCN)2-sensitized Zn2+-doped TiO2 solar cell (1.01%) was larger than that of RuL2(SCN)2-sensitized pure TiO2 solar cell (0.82%) at the same conditions when 0.5 mol · l−1 (CH3)4N · I + 0.05 mol · l−1 I2 in propylene carbonate solution was used as electrolyte.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. Bjorksten, J. Moser and M. GrÄtzel, Chem. Mater. 6 (1994) 858–863.Google Scholar
  2. 2.
    S. Hotchandani and P. V. Kamat, J. Electrochem. Soc. 139 (1992) 1630.Google Scholar
  3. 3.
    K. Rensmo, K. Keis, H. Lindstrom et al., J. Phys. Chem. B 101 (1997) 2598–2601.Google Scholar
  4. 4.
    B. O. Regan and M. GrÄtzel, Nature 353 (1991) 737–739.Google Scholar
  5. 5.
    I. Bedja and P. V. Kamat, J. Phys. Chem. 99 (1995) 9187.Google Scholar
  6. 6.
    R. Vogel, K. Poul and H. Welle, Chem. Phys. Lett. 174 (1990) 241.Google Scholar
  7. 7.
    R. Vogel, K. Poul and H. Welle, J. Phys. Chem. 98 (1994) 3183.Google Scholar
  8. 8.
    Diliu and P. V. Kamat, J. Electroanal. Chem. 347 (1993) 451.Google Scholar
  9. 9.
    M. K. Nazeeruddin, A. Kay and M. GrÄtze, J. Amer. Chem. Soc. 115 (1993) 6832.Google Scholar
  10. 10.
    S. Hotchandani and P. V. Kamat, Chem. Phys. Lett. 191 (1992) 320.Google Scholar
  11. 11.
    C. Nasr, S. Hotchandani and P. V. Kamat, J. Phys. Chem. B 101 (1997) 7480.Google Scholar
  12. 12.
    M. I. Litter and J. A. Navio, J. Photochem. Photobiol. A Chem. 98 (1994) 183.Google Scholar
  13. 13.
    M. I. Litter and J. A. Navio, J. Mol. Catal. 106 (1996) 267.Google Scholar
  14. 14.
    L. Palamisono, V. Augugliao, A. Sclafani et al., J. Phys. Chem. 92 (1983) 6710–6713.Google Scholar
  15. 15.
    J. Soria, J. C. Conesa, V. Augugliaro, et al., J. Phys. Chem. 95 (1991) 274–282.Google Scholar
  16. 16.
    E. K. Karakitsou and X. E. Verykios, J. Phys. Chem. 97 (1993) 1184–1189.Google Scholar
  17. 17.
    Wongyong Choi, A. Termin and M. R. Hoffermann, J. Phys. Chem. 98 (1994) 13669–13679.Google Scholar
  18. 18.
    Humin Cheng, Jimin Ma et al., Chem. Mater. 7 (1995) 663–671.Google Scholar
  19. 19.
    Yanqin Wang, Humincheng and Yanzhong Hao et al., J. Mater. Sci., accepted.Google Scholar
  20. 20.
    “Inorganic Chemistry,” People's Education, Shanghai (1978).Google Scholar
  21. 21.
    G. Svehla, “Vogel's Textbook of Macro and Semimacro Qualitative Inorganic Analysis,” 5th ed. (1978).Google Scholar
  22. 22.
    A. Hagfeldt and M. GrÄtzel, Chem. Rev. 95 (1995) 49–68.Google Scholar
  23. 23.
    R. D. Shannon, Acta Cryst. A32 (1976) 751.Google Scholar
  24. 24.
    Miezeng Su, “Introduction of solid chemistry,” Peking University (1987).Google Scholar
  25. 25.
    N. DeTacconi, J. Carmona and K. Rajeshwar, J. Phys. Chem. B 101 (1997) 10151–10154.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Yanqin Wang
    • 1
  • Yanzhong Hao
    • 1
  • Humin Cheng
    • 1
  • Jiming Ma
    • 1
  • Bin Xu
    • 1
  • Weihua Li
    • 1
  • Shengmin Cai
    • 1
  1. 1.Department of ChemistryPeking UniversityBeijingPeople′s Republic of China

Personalised recommendations