Advertisement

Journal of Low Temperature Physics

, Volume 118, Issue 5–6, pp 751–763 | Cite as

Nano-Electronic Realizations of Quantum Bits

  • Yuriy Makhlin
  • Gerd Shön
  • Alexander Shnirman
Article

Abstract

Quantum computers could perform certain tasks which noclassical computer can perform in acceptable times. Josephsonjunction circuits can serve as building blocks of quantumcomputers. We discuss and compare two designs, which employcharge or magnetic flux degrees of freedom to process quantuminformation. In both cases, elementary single-qubit and two-qubit logic gates can be performed by voltage or flux pulses.The coherence time is long enough to allow a series of suchoperations. We also discuss the read-out, i.e. a quantummeasurement process. In the charge case it is accomplished bycoupling a single-electron transistor to the qubit.

Keywords

Coherence Building Block Magnetic Material Magnetic Flux Quantum Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Shnirman, G. Schon, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).Google Scholar
  2. 2.
    Yu. Makhlin, G. Schon, and A. Shnirman, Nature 398, 305 (1999).Google Scholar
  3. 3.
    D.V. Averin, Solid State Commun. 105, 659 (1998).Google Scholar
  4. 4.
    L.B. Ioffe, V.B. Geshkenbein, M.V. Feigelman, A.L. Fauchere, and G. Blatter, Nature 398, 679 (1999).Google Scholar
  5. 5.
    J.E. Mooij, T.P. Orlando, L. Levitov, Lin Tian, C.H. van der Wal, S. Lloyd, Science 285, 1036 (1999). Also cond-matj9908283, cond-matj9910062.Google Scholar
  6. 6.
    M. Tinkham. Introduction to Superconductivity. McGraw-Hill, New York, 1996.Google Scholar
  7. 7.
    A.J. Leggett. In: “Chance and Matter, p. 395. Elsevier, 1987.Google Scholar
  8. 8.
    C.D. Tesche, Phys. Rev. Lett. 64, 2358 (1990).Google Scholar
  9. 9.
    G. Schön, A. Shnirman, and Yu. Makhlin, to be published in: Exploring the Quantum-Classical Frontier. Eds. J.R. Friedman and S. Han, Nova Science Publishers, Commack, NY.Google Scholar
  10. 10.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).Google Scholar
  11. 11.
    Weiss, U. Quantum dissipative systems. World Scientific, Singapore, 1993.Google Scholar
  12. 12.
    A. Shnirman and G. Schon, Phys. Rev. B 57, 15400 (1998).Google Scholar
  13. 13.
    H. Schoeller, G. Schon, Phys. Rev. B 50, 18436 (1994).Google Scholar
  14. 14.
    V. Bouchiat, P. Joyez, D. Esteve, and M. Devoret, Physica Scripta T76, 165 (1998); V. Bouchiat, Ph. D. Thesis, Universite Paris 6, (1997).Google Scholar
  15. 15.
    Y. Nakamura, C.D. Chen, and J.S. Tsai, Phys. Rev. Lett. 79, 2328 (1997).Google Scholar
  16. 16.
    Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nature 398, 786 (1999).Google Scholar
  17. 17.
    R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, and D.E. Prober, Science 280, 1238 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Yuriy Makhlin
    • 1
    • 2
  • Gerd Shön
    • 1
    • 3
  • Alexander Shnirman
    • 1
  1. 1.Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruheGermany
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Forschungszentrum Karlsruhe, Institut für NanotechnologieKarlsruhe

Personalised recommendations