Journal of Statistical Physics

, Volume 96, Issue 5–6, pp 1125–1161 | Cite as

Goldstone Boson Normal Coordinates in Interacting Bose Gases

  • T. Michoel
  • A. Verbeure
Article

Abstract

Spontaneous symmetry breaking (SSB) is one of the basic aspects of collective phenomena such as phase transitions in statistical mechanics or ground-state excitations in field theory. In general, spectral analysis of SSB is related to the presence of a Goldstone boson particle. The explicit construction of the canonical variables (boson field operator and its adjoint) of this boson has so far been an open problem. In this paper, we consider the SSB of Bose–Einstein condensation in two models: the so-called imperfect or mean field Bose gas (which is nothing but a perfect ideal Bose gas including the property of equivalence of ensembles), and the Bogoliubov weakly interacting Bose gas. For both we construct explicitly the Goldstone boson field variables. The remarkable result is that in both cases the field and its adjoint field are formed as the “fluctuation operators” respectively of the order parameter operator and of the generator of the broken symmetry. The notion of “fluctuation operator” is essential for our mathematical construction. We find that although the order parameter has a critical fluctuation, the generator of the broken symmetry has a squeezed fluctuation of the same inverse rate. Furthermore, we prove that this canonical pair of variables decouples from the other variables of the system, and that these fluctuations behave dynamically as long-wavelength sound waves or as oscillator variables.

spontaneous symmetry breaking Goldstone theorem normal coordinates interacting Bose gases Bose–Einstein condensation quantum fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Goldstone, Il Nuovo Cimento 19:154 (1961).Google Scholar
  2. 2.
    J. A. Swieca, Commun. Math. Phys. 4:1 (1967).Google Scholar
  3. 3.
    D. Kastler, D. W. Robinson, and J. A. Swieca, Commun. Math. Phys. 2:108 (1966).Google Scholar
  4. 4.
    D. Pines, Elementary Excitations in Solids (Benjamin, 1964).Google Scholar
  5. 5.
    C. Kittel, Quantum Theory of Solids (Wiley, 1963).Google Scholar
  6. 6.
    A. Davidov, Théorie du Solide (Editions MIR, 1980).Google Scholar
  7. 7.
    D. Goderis, A. Verbeure, and P. Vets, Il Nuovo Cimento B 106:375 (1991).Google Scholar
  8. 8.
    M. Broidioi and A. Verbeure, Helv. Phys. Acta 64:1093 (1991).Google Scholar
  9. 9.
    A. Verbeure and V. A. Zagrebnov, J. Stat. Phys. 69:329 (1992).Google Scholar
  10. 10.
    M. Broidioi and A. Verbeure, Helv. Phys. Acta 66:155 (1993).Google Scholar
  11. 11.
    D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 122:122 (1989).Google Scholar
  12. 12.
    D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 128:533 (1990).Google Scholar
  13. 13.
    P. W. Anderson, Phys. Rev. 112:1900 (1958).Google Scholar
  14. 14.
    H. Stern, Phys. Rev. 147:94 (1966).Google Scholar
  15. 15.
    T. Michoel, B. Momont, and A. Verbeure, Rep. Math. Phys. 41:361 (1998).Google Scholar
  16. 16.
    B. Momont, A. Verbeure, and V. A. Zagrebnov, J. Stat. Phys. 89:633 (1997).Google Scholar
  17. 17.
    K. Huang, Statistical Mechanics (Wiley, London, 1967).Google Scholar
  18. 18.
    E. B. Davies, Commun. Math. Phys. 28:69 (1972).Google Scholar
  19. 19.
    M. Fannes and A. Verbeure, J. Math. Phys. 21:1809 (1980).Google Scholar
  20. 20.
    M. Fannes, J. V. Pulè, and A. Verbeure, Helv. Phys. Acta 55:391 (1982).Google Scholar
  21. 21.
    N. Angelescu, J. G. Brankov, and A. Verbeure, J. Phys. A 29:3341 (1996).Google Scholar
  22. 22.
    D. Petz, An Invitation to the Algebra of Canonical Commutation Relations, Leuven Notes in Mathematical and Theoretical Physics, Vol. 2, Ser. A (Leuven University Press, Leuven, 1990).Google Scholar
  23. 23.
    N. Angelescu and A. Verbeure, Physica A 216:386 (1995).Google Scholar
  24. 24.
    R. P. Feynman, Phys. Rev. 94:262 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • T. Michoel
    • 1
    • 2
  • A. Verbeure
    • 1
  1. 1.Instituut voor Theoretische Fysica, Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Aspirant van het Fonds voor Wetenschappelijk Onderzoek-Vlaanderen

Personalised recommendations