A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling
- 740 Downloads
- 50 Citations
Abstract
The morphological development of oxide scale on hot-rolled steel strip under various simulated coiling and cooling conditions was investigated. Oxide-scale structures developed were classified into several categories, and the conditions under which each category formed were identified and mapped. It was found that oxide scale formed under normal coiling and cooling conditions had a structure that was difficult to pickle. Increased cooling rate after coiling, or coiling at a temperature below 350°C, improved this structure. The conditions under which a magnetite layer at the wüstite–steel interface was formed during continuous cooling were also identified and the mechanisms of its formation discussed.
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.W. L. Roberts, Hot Rolling of Steel (Marcel Dekker, New York, 1983), pp. 621-647, 765-777.Google Scholar
- 2.L. B. Pfeil, J. Iron Steel Inst. 123, 237 (1931).Google Scholar
- 3.J. Paidassi, Rev. Metall. 54, 569 (1957); Acta Metall. 6, 184 (1958).Google Scholar
- 4.J. Bénard and O. Coquelle, C.R. Acad. Sci. 222, 796 (1946).Google Scholar
- 5.N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold, London, 1983), p. 72.Google Scholar
- 6.G. Garnaud and R. A. Rapp, Oxid. Met. 11, 193 (1977).Google Scholar
- 7.J. H. Westbrook, Rev. Hautes Temp. Refract. 3, 47 (1966).Google Scholar
- 8.F. Matsuno and S. I. Nishikida, Trans. ISIJ 26, B-251 (1986).Google Scholar
- 9.Tetsu-to-Hagane 71, S1282 (1985).Google Scholar
- 10.K. M. Browne, J. Dryden, and M. Assefpour, Recent Advances in Heat Transfer and Micro-Structure Modelling for Metal Processing, MD-Vol. 67, R. M. Guo and J. J. M. Too, eds. (ASME, Metals Park, OH, 1995), pp. 187-197.Google Scholar
- 11.R. Y. Chen and W. Y. D. Yuen, Proc. Conf. 41st Mechanical Working and Steel Proc., Vol. 37 (Iron and Steel Society, Philadelphia, PA, 1999), pp. 697-705.Google Scholar
- 12.H. A. Wriedt, in Binary Alloy Phase Diagrams, 2nd edn., Vol. 2, T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds. (ASM International, Metals Park, OH, 1990), pp. 1739-1744.Google Scholar
- 13.H. J. Engell, Arch. Eisenhuettenwes. 28, 109 (1957).Google Scholar
- 14.W. A. Fischer, A. Hoffmann, and R. Shimada, Arch. Eisenhuettenwes. 27, 521 (1956).Google Scholar
- 15.W. A. Fischer and A. Hoffmann, Arch. Eisenhuettenwes. 29, 107 (1958).Google Scholar
- 16.T. Shiraiwa and F. Matsuno, Sumitomo Met. 19, 33 (1967).Google Scholar
- 17.B. Ilschner and E. Mlitzke, Acta Metall. 13, 855 (1965).Google Scholar
- 18.G. Chaudron and H. Forestier, C.R. Acad. Sci. 178, 2173 (1924).Google Scholar
- 19.E. A. Gulbransen and R. Ruka, Trans. AIME 188, 1500 (1950).Google Scholar
- 20.J. Paidassi, Acta Metall. 3, 447 (1955).Google Scholar
- 21.R. Collongues and G. Chaudron, Rev. Metall. 49, 699 (1952).Google Scholar
- 22.G. Chaudron and R. Collongues, Rev. Metall. 48, 917 (1951).Google Scholar
- 23.R. Collongues, R. Sifferlen, and G. Chaudron, Rev. Metall. 50, 727 (1953).Google Scholar
- 24.V. Lee, B. Gleeson, and D. Young, unpublished work, 1996.Google Scholar
- 25.J. Smuts and P. R. De Villiers, J. Iron Steel Inst. 204, 787 (1966).Google Scholar
- 26.W. A. Fischer and A. Hoffmann, Arch. Eisenhuettenwes. 30, 15 (1959).Google Scholar
- 27.S. Garber, Metall. Soc. Conf. 6, 41 (1960).Google Scholar
- 28.S. Garber, J. Iron Steel Inst. 192, 153 (1959).Google Scholar
- 29.K. Sachs and G. T. F. Jay, J. Iron Steel Inst. 195, 180 (1960).Google Scholar
- 30.J. W. Pickens, Proc. Conf. Mechanical Working Steel Proc., Vol. 21 (Iron and Steel Society, Philadelphia, PA, 1983), pp. 39-65.Google Scholar
- 31.J. Baud, A. Ferrier, and J. Manenc, Oxid. Met. 12, 331 (1978).Google Scholar
- 32.J. Barlow, G. T. F. Jay, and K. Sachs, J. Iron Steel Inst. 203, 983 (1965).Google Scholar
- 33.K. Sachs and G. T. F. Jay, J. Iron Steel Inst. 193, 34 (1959).Google Scholar
- 34.L. Hachtel, Prakt. Metallogr. 32, 332 (1995).Google Scholar
- 35.F. Wever and H. J. Engell, Arch. Eisenhuettenwes. 27, 475 (1956).Google Scholar
- 36.J. Tominaga, K. Wakimoto, T. Mori, M. Murakami, and T. Yoshimura, Trans. ISIJ 22, 646 (1982).Google Scholar
- 37.W. R. Thiele and B. Frisch, Mitt. Ver. Deut. Emailfachleute 25, 65 (1977).Google Scholar
- 38.B. Frisch, W. R. Thiele, and D. Prediger, Arch. Eisenhuettenwes. 54, 311 (1983).Google Scholar
- 39.B. Frisch and W. R. Thiele, Stahl. Eisen. 101, 577 (1981).Google Scholar
- 40.B. Frisch, W. R. Thiele, and W. Doenhardt, Stahl. Eisenhuetten wes. 106, 641 (1986).Google Scholar
- 41.R. Y. Chen and W. Y. D. Yuen, Unpublished work, 1999.Google Scholar
- 42.M. Confente, D. Geneve, B. Resiak, and M. Jallon, Wire J. Intern. 28, 238 (1995).Google Scholar
- 43.R. H. B. Queiroga, R. J. M. Santos, and D. B. Santos, Wire J. Intern. 28, 56 (1995).Google Scholar
- 44.K. Sachs and T. Pitt, J. Iron Steel Inst. 197, 1 (1961).Google Scholar
- 45.S. Garber and G. M. Sturgeon, Wire Ind. 28, 257 (1961).Google Scholar
- 46.Y. Chen, J. Mater. Sci. Lett. 14, 1243 (1995).Google Scholar
- 47.J. O. Edström, J. Iron Steel Inst. 188, 289 (1953).Google Scholar
- 48.V. Raghavan, Phase Diagrams of Ternary Iron Alloys Part 5: Ternary Systems Containing Iron and Oxygen (The Indian Institute of Metals, Calcutta, India, 1989), pp. 5-8.Google Scholar