Journal of Engineering Mathematics

, Volume 38, Issue 1, pp 13–31 | Cite as

Matched asymptotic expansions for bent and twisted rods: applications for cable and pipeline laying

  • D.M. Stump
  • G.H.M. van der HEIJDEN


The geometrically exact theory of linear elastic rods is used to formulate the general three-dimensional problem of a twisted, clamped rod hanging under gravity and subject to buoyancy forces from a fluid. The resulting boundary-value problem is solved by the method of matched asymptotic expansions. The truncated analytical solution is compared with results obtained from a numerical scheme and shows good agreement. The method is used to consider the near-catenary application of a clamped pipeline.

Key words:  rod theory, matched asymptotic expansions, boundary layers, catenary, heavy cables, pipelines, buoyancy forces


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Brown and L. Elliott, Pipelaying from a barge. Math. Engng. Ind. 1 (1987) 33-46.Google Scholar
  2. 2.
    A. H. Nayfeh, Perturbation Methods. New York: John Wiley & Sons (1973) 425 pp.Google Scholar
  3. 3.
    J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods. Berlin: Springer-Verlag (1996) 632 pp.Google Scholar
  4. 4.
    R. Plunkett, Static bending stresses in catenaries and drill strings. Trans. ASME J. Eng. for Industry 89 (1967) 31-36.Google Scholar
  5. 5.
    S. W. Rienstra, Analytical approximations for offshore pipeline problems. In: A.H.P. van der Burgh and R.M.M. Mattheij (eds.), Proceedings of the First International Conference on Industrial and Applied Mathematics ICIAM 87 (contributions from the Netherlands). Amsterdam: CWI Tracts (1987) 99-108.Google Scholar
  6. 6.
    D. A. Dixon and D. R. Rutledge, Stiffened catenary calculations in pipeline laying problem. Trans. ASME J. Eng. for Industry 90 (1968) 153-160.Google Scholar
  7. 7.
    I. Konuk, Higher order approximations in stress analysis of submarine pipelines. Trans. ASME J. Energy Res. Technology 102 (1980) 190-196.Google Scholar
  8. 8.
    P. Wolfe, The effect of bending stiffness on inextensible cable. Int. J. Engng. Sci. 30 (1992) 1187-1192.Google Scholar
  9. 9.
    P. Wolfe, Hanging cables with small bending stiffness. Nonlinear Anal. T.M.A. 20 (1993) 1193-1204.Google Scholar
  10. 10.
    I. Konuk, Application of an adaptive numerical technique to 3-D pipeline problems with strong nonlinearities, Trans. ASME J. Energy Res. Technology 104 (1982) 58-62.Google Scholar
  11. 11.
    D. M. Stump and W. B. Fraser, Bending boundary layers in a moving strip. Nonlinear Dynamics (in press).Google Scholar
  12. 12.
    A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity. 4th ed. Cambridge: Cambridge University Press (1927) 643 pp.Google Scholar
  13. 13.
    S. S. Antman, Nonlinear Problems of Elasticity Berlin: Springer-Verlag (1995) 750 pp.Google Scholar
  14. 14.
    A. R. Champneys, G. H. M. van der Heijden and J. M. T. Thompson, Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature. Phil. Trans. R. Soc. Lond. A 355 (1997) 2151-2174.Google Scholar
  15. 15.
    P. T. Pedersen, Equilibrium of offshore cables and pipelines during laying. Int. Shipbuilding Progress 22 (1975) 399-408.Google Scholar
  16. 16.
    J. Coyne, Analysis of the formation and elimination of loops in twisted cable. IEEE J. Ocean. Eng. 15 (1990) 72-83.Google Scholar
  17. 17.
    M. Van Dyke, Perturbation Methods in Fluid Mechanics, Stanford: Parabolic Press (1975) 271 pp.Google Scholar
  18. 18.
    U. Ascher, J. Christiansen and R. D. Russell, Collocation software for boundary-value ODEs. ACM Trans. Math. Software 7 (1981) 209-222. The COLNEW code is freely available at Scholar
  19. 19.
    J. L. Meriam and L. G. Kraige, Engineering Mechanics, Volume 1: Statics, Third Edition. New York: John Wiley & Sons (1992) 533 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D.M. Stump
    • 1
  • G.H.M. van der HEIJDEN
    • 2
  1. 1.Department of MathematicsThe University of QueenslandSt. LuciaAustralia
  2. 2.Department of MathematicsThe University of QueenslandSt. LuciaAustralia

Personalised recommendations